
Numerical solutions to DEs
Euler’s method and improved Euler’s method

Prof. Joyner1

Read Euler: he is our master in everything.
- Pierre Simon de Laplace

Leonhard Euler (pronounced “Oiler”) was a Swiss mathematician who
made significant contributions to a wide range of mathematics and physics
including calculus and celestial mechanics (see [Eu1] and [Eu2] for further
details). Euler (17071783) is considered to be the preeminent mathematician
of the 18th century and one of the greatest of all time. Here we study a
method developed by Euler to numerically approximate solutions to first
order IVPs.

The goal is to find an approximate solution to the problem

y′ = f(x, y), y(a) = c, (1)

where f(x, y) is some given function. We shall try to approximate the value
of the solution at x = b, where b > a is given. Sometimes such a method is
called “numerically integrating (1)”.

Note: the first order DE must be in the form (1) or the method described
below does not work. A version of Euler’s method for systems of 1-st order
DEs and higher order DEs will also be described below.

Euler’s method

Geometric idea: The basic idea can be easily expressed in geometric
terms. We know the solution, whatever it is, must go through the point (a, c)
and we know, at that point, its slope is m = f(a, c). Using the point-slope
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form of a line, we conclude that the tangent line to the solution curve at (a, c)
is (in (x, y)-coordinates, not to be confused with the dependent variable y
and independent variable x of the DE)

y = c + (x − a)f(a, c).

In particular, if h > 0 is a given small number (called the increment) then
taking x = a + h the tangent-line approximation from calculus I gives us:

y(a + h) ∼= c + h · f(a, c).

Now we know the solution passes through a point which is “nearly” equal to
(a + h, c + h · f(a, c). We now repeat this tangent-line approximation with
(a, c) replaced by (a+h, c+h ·f(a, c). Keep repeating this number-crunching
at x = a, x = a + h, x = a + 2h, ..., until you get to x = b.

Algebraic idea: The basic idea can also be explained “algebraically”.
Recall from the definition of the derivative in calculus 1 that

y′(x) ∼=
y(x + h) − y(x)

h
,

h > 0 is a given and small. This an the DE together give f(x, y(x)) ∼=
y(x+h)−y(x)

h
. Now solve for y(x + h):

y(x + h) ∼= y(x) + h · f(x, y(x)).

If we call h · f(x, y(x)) the “correction term” (for lack of anything better),
call y(x) the “old value of y”, and call y(x + h) the “new value of y”, then
this approximation can be re-expressed

ynew = yold + h · f(x, yold).

Tabular idea: Let n > 0 be an integer, which we call the step size.
This is related to the increment by

h =
b − a

n
.

This can be expressed simplest using a table.
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x y hf(x, y)
a c hf(a, c)

a + h c + hf(a, c)
...

a + 2h
...

...
b ??? xxx

The goal is to fill out all the blanks of the table but the xxx entry and
find the ??? entry, which is the Euler’s method approximation for y(b).

Example 1 Use Euler’s method with h = 1/2 to approximate y(1), where

y′
− y = 5x − 5, y(0) = 1.

Putting the DE into the form (1), we see that here f(x, y) = 5x + y − 5,
a = 0, c = 1.

x y hf(x, y) = 5x+y−5
2

0 1 −2
1/2 1 + (−2) = −1 −7/4
1 −1 + (−7/4) = −11/4

so y(1) ∼= −
11
4

= −2.75. This is the final answer.
Aside: For your information, y = ex

− 5x solves the DE and y(1) =
e − 5 = −2.28....

Here is one way to do this using SAGE :

SAGE

sage: x,y=PolynomialRing(QQ,2,"xy").gens()
sage: eulers_method(5*x+y-5,1,1,1/3,2)

x y h*f(x,y)
1 1 1/3

4/3 4/3 1
5/3 7/3 17/9

2 38/9 83/27
sage: eulers_method(5*x+y-5,0,1,1/2,1,method="none")
[[0, 1], [1/2, -1], [1, -11/4], [3/2, -33/8]]
sage: pts = eulers_method(5*x+y-5,0,1,1/2,1,method="none")
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sage: P = list_plot(pts)
sage: show(P)
sage: P = line(pts)
sage: show(P)
sage: P1 = list_plot(pts)
sage: P2 = line(pts)
sage: show(P1+P2)
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The plot is given below.

Figure 1: Euler’s method with h = 1/2 for x′ + x = 1, x(0) = 2.

Improved Euler’s method

Geometric idea: The basic idea can be easily expressed in geometric
terms. As in Euler’s method, we know the solution must go through the
point (a, c) and we know its slope there is m = f(a, c). If we went out
one step using the tangent line approximation to the solution curve, the
approximate slope to the tangent line at x = a + h, y = c + h · f(a, c)
would be m′ = f(a + h, c + h · f(a, c)). The idea is that instead of using
m = f(a, c) as the slope of the line to get our first approximation, use m+m′

2
.

The “improved” tangent-line approximation at (a, c) is:

y(a + h) ∼= c + h ·

m + m′

2
= c + h ·

f(a, c) + f(a + h, c + h · f(a, c))

2
.

(This turns out to be a better apprpximation than the tangent-line approx-
imation y(a + h) ∼= c + h · f(a, c) used in Euler’s method.) Now we know
the solution passes through a point which is “nearly” equal to (a + h, c + h ·

m+m′

2
). We now repeat this tangent-line approximation with (a, c) replaced

by (a + h, c + h · f(a, c). Keep repeating this number-crunching at x = a,
x = a + h, x = a + 2h, ..., until you get to x = b.
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Tabular idea: The integer step size n > 0 is related to the increment by

h =
b − a

n
,

as before.
The improved Euler method can be expressed simplest using a table.

x y hm+m′

2
= hf(x,y)+f(x+h,y+h·f(x,y))

2

a c hf(a,c)+f(a+h,c+h·f(a,c))
2

a + h c + hf(a,c)+f(a+h,c+h·f(a,c))
2

...

a + 2h
...

...
b ??? xxx

The goal is to fill out all the blanks of the table but the xxx entry and find
the ??? entry, which is the improved Euler’s method approximation

for y(b).

Example 2 Use the improved Euler’s method with h = 1/2 to approximate
y(1), where

y′
− y = 5x − 5, y(0) = 1.

Putting the DE into the form (1), we see that here f(x, y) = 5x + y − 5,
a = 0, c = 1. We first compute the “correction term”:

hf(x,y)+f(x+h,y+h·f(x,y))
2

= 5x+y−5+5(x+h)+(y+h·f(x,y))−5
4

= 5x+y−5+5(x+h)+(y+h·(5x+y−5))−5
4

= 25x/8 + 5y/8 − 5/2.

Next, we put that into the third column of the table and compute the rest of
entries as described above.

x y hm+m′

2
= 25x+5y−20

8

0 1 −15/8
1/2 1 + (−15/8) = −7/8 −95/64
1 −7/8 + (−95/64) = −151/64
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so y(1) ∼= −
151
64

= −2.35... This is the final answer.
Aside: For your information, this is closer to the exact value y(1) =

e− 5 = −2.28... than the “usual” Euler’s method approximation of −2.75 we
obtained above.

Euler’s method for systems and higher order DEs

We only sketch the idea in some simple cases. Consider the DE

y′′ + p(x)y′ + q(x)y = f(x), y(a) = e1, y′(a) = e2,

and the system

y′

1 = f1(x, y1, y2), y1(a) = c1,
y′

2 = f2(x, y1, y2), y2(a) = c2.

We can treat both cases after first rewriting the DE as a system: create
new variables y1 = y and let y2 = y′. It is easy to see that

y′

1 = y2, y1(a) = e1,
y′

2 = f(x) − q(x)y1 − p(x)y2, y2(a) = e2.

Tabular idea: Let n > 0 be an integer, which we call the step size.
This is related to the increment by

h =
b − a

n
.

This can be expressed simplest using a table.

x y1 hf1(x, y1, y2) y2 hf2(x, y1, y2)
a e1 hf1(a, e1, e2) e2 hf2(a, e1, e2)

a + h e1 + hf1(a, e1, e2)
... e1 + hf1(a, e1, e2)

...

a + 2h
...

...
b ??? xxx xxx xxx

The goal is to fill out all the blanks of the table but the xxx entry and find
the ??? entries, which is the Euler’s method approximation for y(b).
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Example 3 Using 3 steps of Euler’s method, estimate x(1), where x′′
−3x′+

2x = 1, x(0) = 0, x′(0) = 1
First, we rewrite x′′

− 3x′ + 2x = 1, x(0) = 0, x′(0) = 1, as a system of
1st order DEs with ICs. Let x1 = x, x2 = x′, so

x′

1 = x2, x1(0) = 0,
x′

2 = 1 − 2x1 + 3x2, x2(0) = 1.

This is the DE rewritten as a system in standard form. (In general, the
tabular method applies to any system but it must be in standard form.)

Taking h = (1 − 0)/3 = 1/3, we have

t x1 x2/3 x2 (1 − 2x1 + 3x2)/3
0 0 1/3 1 4/3

1/3 1/3 7/9 7/3 22/9
2/3 10/9 43/27 43/9 xxx
1 73/27 xxx xxx xxx

So x(1) = x1(1) ∼ 73/27 = 2.7....

Here is one way to do this using SAGE :

SAGE

sage: RR = RealField(sci_not=0, prec=4, rnd=’RNDU’)
sage: t, x, y = PolynomialRing(RR,3,"txy").gens()
sage: f = y; g = 1-2*x+3*y
sage: L = eulers_method_2x2(f,g,0,0,1,1/3,1,method="none")
sage: L
[[0, 0, 1], [1/3, 0.35, 2.5], [2/3, 1.3, 5.5],
[1, 3.3, 12], [4/3, 8.0, 24]]
sage: eulers_method_2x2(f,g, 0, 0, 1, 1/3, 1)
t x h*f(t,x,y) y h*g(t,x,y)
0 0 0.35 1 1.4
1/3 0.35 0.88 2.5 2.8
2/3 1.3 2.0 5.5 6.5
1 3.3 4.5 12 11
sage: P1 = list_plot([[p[0],p[1]] for p in L])
sage: P2 = line([[p[0],p[1]] for p in L])
sage: show(P1+P2)
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The plot of the approximation to x(t) is given below.

Figure 2: Euler’s method with h = 1/3 for x′′
− 3x′ + 2x = 1, x(0) = 0,

x′(0) = 1.

Exercise: Use SAGE and Euler’s method with h = 1/3 for the following
problems:

(a) Find the approximate values of x(1) and y(1) where

{

x′ = x + y + t, x(0) = 0,
y′ = x − y, y(0) = 0,

(b) Find the approximate value of x(1) where x′ = x2 + t2, x(0) = 1.
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