
SM462 class notes

- Prof. W D Joyner1

Contents

1 Introduction to rings 2
1.1 Examples of rings using Sagemath 2
1.2 Definition of a ring . 9
1.3 Subrings . 15
1.4 Integral domains and fields . 16
1.5 Ring homomorphisms and ideals 19

1.5.1 Ideals . 19
1.5.2 Quotient rings . 21
1.5.3 Ring homs . 22
1.5.4 UFDs . 24

1.6 Polynomial rings . 25
1.6.1 Application: Shamir’s Secret Sharing Scheme 26
1.6.2 Application: NTRU . 30
1.6.3 Application: Modified NTRU 35
1.6.4 Application to LFSRs 39

2 Structure of finite fields 43
2.1 Cyclic multiplicative group . 43
2.2 Extension fields . 45
2.3 Back to the LFSR . 50

3 Error-correcting codes 55
3.1 The communication model . 56
3.2 Basic definitions . 56
3.3 Binary hamming codes . 62
3.4 Coset leaders and the covering radius 65
3.5 Reed-Solomon codes as polynomial codes 68
3.6 Cyclic codes as polynomial codes 70

3.6.1 Reed-Solomon codes as cyclic codes 77
3.6.2 Quadratic residue codes 78

1wdj@usna.edu. Last updated 2016-04-23.

1

3.6.3 BCH bound for cyclic codes 87
3.6.4 Decoding cyclic codes 91
3.6.5 Cyclic codes and LFSRs 95

4 Lattices 98
4.1 Basic definitions . 98
4.2 The shortest vector problem 102

4.2.1 Application to a congruential PKC 106
4.3 LLL and a reduced lattice basis 107
4.4 Hermite normal form . 109
4.5 NTRU as a lattice cryptosystem 111

These are notes for a course based on

• Judson [Ju15], starting with the chapter on rings,

• chapter 2 of Klein [Kl13],

• selected sections of MacWilliams and Sloane [MS77],

• chapter 6 of Hoffstein, Piper and Silverman [HPS].

1 Introduction to rings

This part contains a basic introduction to rings, with lots of examples.

1.1 Examples of rings using Sagemath

Before we formally define a ring (see the next section), the examples below
will hopefully convince you that rings are things are are familiar with already.
This section shows you how to construct some rings in Sagemath . Sagemath
[Sa] is a free computer algebra system which allows you to construct the
algebraic structures discussed in this class.

1. R - the real numbers, using ordinary addition and multiplication.

and:

2

Sagemath

sage: RR(pi)
3.14159265358979
sage: RR2 = RealField(prec=100)
sage: RR2(pi)
3.1415926535897932384626433833
sage: RR(pi+2*e)
8.57815631050788
sage: RR(pi+2*e-sqrt(2)/3)
8.10675178971685

This tells us, for example, that

π = 3.14159265358979 . . . ,

and

π + 2e−
√

2

3
= 8.10675178971685

RR is shorthand for RealField(prec=53), the real field with 53 bits of
precision. Using the optional argument prec, it is easy to change the
precision displayed by Sagemath .

2. C - the complex numbers, using ordinary addition and multiplication.

Sagemath

sage: CC(2*pi*i)
6.28318530717959*I
sage: CC2 = ComplexField(prec=100)
sage: CC2(2*pi*i)
6.2831853071795864769252867666*I

This tells us, for example, that

2πi = (6.2831853071795864769252867666 . . . i).

CC is shorthand for ComplexField(prec=53), the complex number field
with 53 bits of precision. As with RR, using the optional argument prec,
it is easy to change the precision displayed by Sagemath .

3

3. Finite fields GF (q) (defined formally later), where q is a prime power,
can constructed in Sagemath .

Sagemath

sage: GF(3)
Finite Field of size 3
sage: GF(9,"a")
Finite Field in a of size 3ˆ2
sage: next_prime(2015)
2017
sage: F = GF(2017)
sage: 2ˆ100
1267650600228229401496703205376
sage: F(2)ˆ100
1264

Finite fields will be constructed later. For now, note that GF (p), p
prime, does not require a variable name, but GF (q), q a prime power
but not a prime, does require a variable name.

4. Z - the integers, using ordinary addition and multiplication.

These are built in and don’t need to be constructed but here is the
syntax.

Sagemath

sage: ZZ
Integer Ring
sage: R = ZZ
sage: 2015 in R
True

5. Mn×n(R) - the n×n matrices with coefficients in a ring F (e.g., R = Z),
using matrix addition and multiplication.

Sagemath

sage: R = MatrixSpace(ZZ, 2, 2)
sage: a = matrix(ZZ, [[1,2],[3,4]])
sage: b = matrix(ZZ, [[1,-2],[3,-4]])
sage: a in R
True
sage: b in R

4

True
sage: a+b
[2 0]
[6 0]
sage: a*b
[7 -10]
[15 -22]
sage: b*a
[-5 -6]
[-9 -10]

MatrixSpace(ZZ, m, n) is the space of all m × n matrices over Z or
ZZ. It is only a ring when m = n.

6. Z[
√
d] = {a+

√
db | a, b ∈ Z} - the extension of Z by

√
d, where d ∈ Z.

Directly constructing Z[
√
d] is possible in Sagemath in a few ways.

and:
Sagemath

sage: R = ZZ.extension(xˆ2 - 5, ’c’)
sage: R.basis()
[1, c]
sage: c = R.basis()[1]
sage: cˆ2
5
sage: R.is_ring()
True
sage: R.is_integral_domain()
True
sage: R.is_field()
False
sage: 2*c in R
True
sage: R = ZZ.extension(xˆ2 + 3, ’d’)
sage: R
Order in Number Field in d with defining polynomial xˆ2 + 3
sage: R.basis()
[1, d]
sage: d = R.basis()[1]
sage: dˆ2
-3
sage: R.is_ring()
True
sage: R.is_integral_domain()
True
sage: R.is_field()
False

5

The above constructs Z[
√

5] and Z[
√
−3]. The method below is a more

indirect method of computing Z[
√
d], and only works when d > 1.

and:
Sagemath

sage: K.<a> = NumberField(xˆ2 - 2)
sage: aˆ2
2
sage: R = K.maximal_order()
sage: R
Maximal Order in Number Field in a with defining polynomial xˆ2 - 2
sage: R.is_integral_domain()
True
sage: R.basis()
[1, a]
sage: R.is_field()
False
sage: 1/2 in R
False
sage:
sage: L. = NumberField(xˆ2 + 3)
sage: bˆ2
-3
sage: S = L.maximal_order()
sage: S.is_field()
False
sage: S.basis()
[1/2*b + 1/2, b]
sage: 1 in S
True
sage: 1/2 in S
False
sage: S.is_integral_domain()
True

The above constructs Z[
√

2] and Z[1+
√
−3

2
] (not Z[

√
−3]).

7. Z/nZ - the integers (mod n), with addition and multiplication mod-
ulo n.

Directly constructing Z/nZ is easy to do in Sagemath (in fact, I can
think of three ways to do this). Here is one construction:

and:
Sagemath

sage: Z12 = IntegerModRing(12)
sage: Z12.is_integral_domain()

6

False
sage: Z12.is_ring()
True
sage: Z12(12) # coerse 12 into Z12
0
sage: Z12(15) # coerse 15 into Z12
3
sage: Z12(6)+Z12(4)
10
sage: Z12(6)+Z12(14)
8
sage: Z12(6)*Z12(4)
0
sage:
sage: Z13 = IntegerModRing(13)
sage: Z12.is_integral_domain()
False
sage: Z13.is_integral_domain()
True
sage: Z13 = IntegerModRing(13)
sage: Z13.is_integral_domain()
True
sage: Z13(6)*Z13(4)
11
sage: Z13(6)+Z13(4)
10

For example, Z12(6)+Z12(14) = 8 means

6 + 14 ≡ 8 (mod 12).

8. R[x] - polynomials with coefficients in a ring R (e.g., R = Z), under
ordinary polynomial multiplication.

and:
Sagemath

sage: R.<y> = PolynomialRing(Z13, "y")
sage: 1+y in R
True
sage: 14+y in R
True
sage: 14+y
y + 1
sage: (14+y)*(y+12)
yˆ2 + 12
sage:
sage: S.<z> = PolynomialRing(Z12, "z")
sage: (14+z)*(z+12)

7

zˆ2 + 2*z
sage: 14+z in S
True
sage: 14+z
z + 2

9. H = HR - the real quaternions, where

H = {a+ bi + cj + dk | a, b, c, d ∈ R},

where i · j = k, j · k = i, k · i = j, and i · j = −j · i, i · k = −k · i,
k · j = −j · k. Note that

(a+ bi + cj + dk)
a− bi− cj− dk
a2 + b2 + c2 + d2

= 1. (1)

and:
Sagemath

sage: H.<i,j,k> = QuaternionAlgebra(QQ,-1,-1)
sage: a = 3*i - j + 2; b = -i + 5*j +7*k
sage: a; b; a*b; b*a
2 + 3*i - j
-i + 5*j + 7*k
8 - 9*i - 11*j + 28*k
8 + 5*i + 31*j
sage: i.matrix()
[0 1 0 0]
[-1 0 0 0]
[0 0 0 -1]
[0 0 1 0]
sage: j.matrix()
[0 0 1 0]
[0 0 0 1]
[-1 0 0 0]
[0 -1 0 0]
sage: k.matrix()
[0 0 0 1]
[0 0 -1 0]
[0 1 0 0]
[-1 0 0 0]
sage: b1,b2,b3,b4 = H.basis()
sage: 2*b2+3*b3+4*b4 in H
True

8

The last Sagemath command simply checks that 2i + 3j + 4k ∈ H.

Note thatH is a 4-dimensional vector space over R with basis {1, i, j,k}.
In general, the Sagemath command QuaternionAlgebra(a, b) returns the
quaternion algebra over the smallest field containing the nonzero ele-
ments a, b with generators i, j,k with i2 = a, j2 = b and j · i = −i · j.
Exercise: Find the matrix representations of a, b, ab and ba.

10. HZ - the integral quaternions, where

HZ = {a+ bi + cj + dk | a, b, c, d ∈ Z}.

1.2 Definition of a ring

The previous section shows that rings are mathematical structures you are
already familiar with. Here is the formal definition.

Definition 1. A nonempty set R is a ring if it has two closed binary op-
erations, addition + and multiplication · (or juxtaposition), satisfying the
following conditions.

• a+ b = b+ a for a, b ∈ R (“+ is commutative”).

• (a+ b) + c = a+ (b+ c), for a, b, c ∈ R (“+ is associative”).

• There is an element 0 in R such that a + 0 = a for all a ∈ R (“R has
an additive identity element”).

• For every element a ∈ R, there exists an element −a in R such that
a+ (−a) = 0 (“each element of R has an additive inverse”).

• (ab)c = a(bc), for a, b, c ∈ R (“· is associative”).

• For a, b, c ∈ R, a(b+c) = ab+ac and (a+b)c = ac+bc (”the distributive
laws hold”).

Note that if (R,+, ·) is a ring then (R,+) is an abelian group.

Remark 1. If (ab)c = a(bc), does not hold in general then we call R a non-
associative ring. Such rings are important but not discussed in this course.

9

A few basic properties of rings are collected in the following result.

Lemma 2. (Proposition 16.8 in the book [Ju15].)

(a) For any a ∈ R, 0 · a = a · 0 = 0.

(b) We have (−a)b = a(−b) = −ab, for all a, b ∈ R.

(c) We have (−a)(−b) = ab, for all a, b ∈ R.

Proof. (a) Use the distributive law to expand a(a+0): a2 = a ·a = a(a+0) =
a2 + a · 0. The cancellation law implies a · 0 = 0. Likewise, a2 = a · a =
(a+ 0)a = a2 + 0 · a. The cancellation law implies 0 · a = 0.

(b) Use the distributive law to expand a(b + (−b)): Using (a), we have
0 = a(b + (−b)) = ab + a(−b). Now add −ab to both sides. Similarly,
0 = (a+ (−a))b = ab+ (−a)b. Now add −ab to both sides.

(c) Note x + (−x) = 0 and −(−x) + (−x) = 0, so x == (−x), for all
x ∈ R. Therefore, using (b), we have (−a)(−b) = −a(−b) = −(−ab) = ab.
�

You might wonder if the property 0 · a = a · 0 = 0, for all a ∈ R, uniquely
specifies 0. In other words, is 0 the only element of R which has this property?
Is there a ring R for which there is a non-zero ζ ∈ R such that ζ ·a = a·ζ = 0,
for all a ∈ R? Yes, as the following bizarre example shows.

Example 3. Let

R = {
(

0 x
0 0

)
| x ∈ Z}.

This is a commutative ring with the property that ab = 0 for any two a, b ∈ R.

If there is an element 1 ∈ R such that 1 6= 0 and 1a = a1 = a, for each
a ∈ R, we say that R is a ring with identity (or sometimes a ring with unit),
and 1 is called the identity element of R. A ring R for which ab = ba, for all
a, b ∈ R is called a commutative ring.

An element a ∈ R is with a 6= 0 is called a unit in R if there exists a
unique element a−1 ∈ R such that a−11a = aa−1 = 1. We say a, b ∈ R are
associates if there exists a unit u in R such that a = ub. The set of units in
R is denoted

R×.

10

It is a group. Since the terminology “commutative ring with unit” is, while
common, a bit confusing, we shall use the phrase “commutative ring with
identity” when appropriate.

Remark 2. You might think that if a, b ∈ R and (a) = (b) then a, b are
associate. However, this is not true! See the paper [SBGJKMW].

For any a, b ∈ Z with a > 0 and b > 0, let gcd(a, b) denote the greatest
integer whcih divides both a and b. This is called the greatest common divisor
of a, b. If n > 1 is an integer then

φ(n) = |{m ∈ Z | 1 ≤ m ≤ n, gcd(m,n) = 1}.|

This is called the Euler totient function or the Euler φ-function.

Lemma 4. (Bezout’s Lemma) For any integers a > 0 and b > 0, there are
integers x and y satisfying

ax+ by = gcd(a, b).

Proof. Consider the set

(a, b) = {ra+ sb | r ∈ Z, s ∈ Z}.

Since d = gcd(a, b) divides a and b, this set (a, b) must be contained in the
set

(d) = {td | t ∈ Z},

i.e., (a, b) ⊂ (d).
Suppose now (d) 6= (a, b). Let n > 0 be the smallest integer such that

n ∈ (a, b),

written n = ax + by. By the integer “long division” algorithm, there is a
remainder r < d and a quotient q such that n = qd+r. But r = n−qd ∈ (d),
so either r = 0 (so (d) 6= (a, b) is false) or r is a multiple of d (so r < d is
false). This is a contradiction. Therefore, (d) = (a, b). �

Extended Euclidean Algorithm (xgcd):

11

• Initial table: (a < b)

i q r u v
−1 b 1 0
0 a 0 1

• As you increment i, apply the recursive equations: qi = [ri−2/ri−1],
ri = ri−2 − ri−1qi, ui = ui−2 − ui−1qi, vi = vi−2 − vi−1qi.

• Stop when rk = 0 and then let

x = vk−1, y = uk−1.

Example 5. Let a = x4 + x+ 1 and let b = x7 + 1.
Since x7 + 1 = (x3 + 1)(x4 + x+ 1) + (x3 + x), we have

i q r u v
−1 x7 + 1 1 0
0 x4 + x+ 1 0 1
1 x3 + 1 x3 + x 1 x3 + 1

Using the recursive equations, we get

i q r u v
−1 x7 + 1 1 0
0 x4 + x+ 1 0 1
1 x3 + 1 x3 + x 1 x3 + 1
2 x x2 + x+ 1 x x4 + x+ 1
3 x+ 1 x+ 1 x2 + x+ 1 x5 + x4 + x3 + x2

4 x 1 x3 + x2 x6 + x5 + x3 + x+ 1
5 x+ 1 0

therefore

(x4 + x+ 1)(x6 + x5 + x3 + x+ 1) + (x7 − 1)(x3 + x2) = 1.

Algorithm to compute the inverse of c (mod m): Assume gcd(c,m) =
1 and compute x, y such that cx + my = 1 via the xgcd. We have x
(mod m) = c−1 (mod m).

12

Lemma 6. Let R = Z/nZ, where n > 1 is a given integer. The group of
units of R is given by

(Z/nZ)× = {m ∈ Z | 1 ≤ m ≤ n, gcd(m,n) = 1}.

Moreover,

aφ(n) ≡ 1 (mod n),

for a ∈ (Z/nZ)×.

Proof. The proof, which uses group theory, is simple short and clever.
Let

Ω =
∏

x∈(Z/nZ)×
x.

Note Ω 6= 0 since all the elements in the product are units. Note also that,
for each a ∈ (Z/nZ)×, the map

ma : (Z/nZ)× → (Z/nZ)×

given by ma(x) = ax, is a one-to-one and onto map. Therefore, the sets

{x ∈ (Z/nZ)×}, {ma(x) ∈ (Z/nZ)×},

describe the same set, which implies∏
x∈(Z/nZ)×

ax = Ω.

This implies aφ(n) = 1 (in (Z/nZ)×), so

aφ(n) ≡ 1 (mod n).

�

Just because aφ(n) = 1, for all a ∈ (Z/nZ)×, does not mean that (Z/nZ)×

is cyclic. In other words, it is not true in general that (Z/nZ)× has an
element of order φ(n) (in which case 1, a, a2, . . . , aφ(n)−1 would exhaust all
the elements of (Z/nZ)×). However, when n = p is a prime number then
(Z/pZ)× is cyclic. In that case, a generator of (Z/pZ)× is called a primitive
root mod p.

Exercise: Find the set of all units in HZ and show it is a group. What is
it’s order?

13

Example 7. Let GF (2) = Z/2Z, with addition and multiplication (mod 2),
and let R = GF (2)n. Let + stand for component-wise addition (mod 2),
and let · stand for component-wise multiplication. The tuple (R,+, ·) forms
a ring.

Exercise: (a) Check this. (b) Is it a communtative ring with unit?

Example 8. Let M be the set of all midshipmen and let R = P(M) denote
the collection of all subsets of M .

Let + stand for the union operation ∪ and let · stand for ∩. The tuple
(P(M),+, ·) forms a ring.

Exercise: (a) Check this. (b) Is it a communtative ring with unit?

Question: Do you see a connection between these last two examples?

A commutative ring R with identity is called an integral domain if, for
every a, b ∈ R such that ab = 0, either a = 0 or b = 0. A division ring is
a ring R with identity in which every nonzero element in R is a unit (while
older texts call this a skew field). A commutative division ring is called a
field.

Example 9. The ring R = Z/12Z is not an integral domain, since

3 · 4 ≡ 0 (mod 12).

However, the ring R = Z/13Z is an integral domain.

Example 10. The set Z[i] = {m + ni | m,n ∈ Z} forms a ring sometimes
called the Gaussian integers.

Exercise: Find the group of units of Z[i].

Example 11. The ring R = H of quaterions is a division ring because of
the identity (1).

Example 12. The ring R = C0(R) of continuous functions on the real line
is not a division ring.

Exercise: Construct continuous functions f(x) and g(x), each not identi-
cally zero, such that f(x)g(x) = 0 for all x ∈ R.

14

Definition 13. For any integer n > 0 and any element r in a ring R we write
nr = r + . . .+ r (n times). The characteristic of R is defined to be the least
integer n > 0 such that nr = 0 for all r ∈ R. If no such integer exists, then
the characteristic of R is defined to be 0. We will denote the characteristic
of R by char(R).

Example 14. If r = Z/nZ then char(R) = n.
If R = Z then char(R) = 0.

Lemma 15. If R is a ring with identity and if the order of 1 is n (regarding
1 as belonging to the abelian group (R,+)) then char(R) = n.

Theorem 16. The characteristic of an integral domain is either prime or
zero.

1.3 Subrings

In this section we lok at subset of a ring which preserve the operations of
addition and multiplication.

Definition 17. A subring S of a ring R is a subset S ⊂ R such that S is
also a ring under the inherited operations from R.

Example 18. • The integers R = Z form a ring and the subset of mul-
tiples of 6, S = 6Z, forms a subring.

• The polynomials having integral coefficients, R = Z[x], form a ring and
the subset of integers, S = Z, forms a subring.

• The real quaternions H form a ring, and the integral quaternions HZ
forms a subring.

• The ring S = Z/12Z is not a subring of R = Z because it is not a
subset.

•

Exercise: Classify all subrings of Z.

Question: For which n ≥ m > 1 is Z/mZ a subring of Z/nZ?

15

Exercise: (a) Let R = GF (2)2, with componentwise addition+ and multi-
plication ·:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), (x1, y1) · (x2, y2) = (x1 · x2, y1 · y2),

for xi, yj ∈ GF (2). Show this is a ring.
(b) For x ∈ GF (2) define x = x + 1 (the “bit flip”). Let S = GF (2)2,

with addition ⊕ and componentwise multiplication ·:

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + y2), (x1, y1) · (x2, y2) = (x1 · x2, y1 · y2),

for xi, yj ∈ GF (2). Show this is a ring. However, note S is not a subring of
R because the operations are not inherited.

Proposition 19. Let R be a ring and S a subset of R. Then S is a subring
of R if and only if the following conditions are satisfied.

• S 6= ∅.

• rs ∈ S for all r, s ∈ S.

• r − s ∈ S for all r, s ∈ S.

Exercise: Prove Proposition 19.

Exercise: Do # 2, 3, 17, 18, 24-25, 29-30, 32-35, 38 from the book [Ju15],
page 202-206.

1.4 Integral domains and fields

In this section, we define a very special type of ring called a field.

Definition 20. An integral domain is an commutative ring with identity
which has not zero divisors. A subring of an integral domain is an integral
domain.

If every non-zero element in a ring R with identity is a unit (i.e., is
invertible in R) is called2 a division ring. A subring of a division ring is not
necessarily a division ring.

A commutative division ring is called a field.

2In older texts, the term skew field is used.

16

Roughly speaking, an integral domain R is the smallest type of ring for
which the quotient field construction works. This is discussed in another
chapter, but the simplest example is the integral domain R = Z and its
quotient field

Q = {a
b
| a, b ∈ Z, b 6= 0}.

Example 21. • The ring of rational quaternions, R = HQ, is a division
ring. (This was shown in an exercise above.) The subring S = Q ⊂ R
is also a division ring. Since § is also commutative, it is a field.

• The subring S = HZ ⊂ R = HQ is not a division ring.

• For which integers n > 1 is R = Z/nZ a field?

Proposition 22. Let R be a commutative ring with identity. TFAE:

• R is an integral domain.

• For all nonzero elements a ∈ R, a 6= 0, ab = ac, implies b = c. (The
cancellation law.)

Proof. (2) ⇒ (1):
...

(1) ⇒ (2)
...
�

Theorem 23. (Wedderburn’s Theorem) Every finite integral domain is a
field.

Proof. ...
�

Example 24. The ring R = Z/pZ is a field, for each prime p.

If R is a ring and x ∈ R then the order of x, denoted ordR(x), is the least
integer n = ordR(x) > 0 such that

nx = x+ . . .+ x = 0 (n times)

17

if it exists. If no such n exists then define ordR(x) = ∞. If R is a ring and
if there exists a least integer n > 0 such that

nx = x+ . . .+ x = 0 (n times),

for all x ∈ R, then n is called the characteristic of R, denoted char(R) = n.
If no such n exists then define char(R) = 0.

It follows immediately from the definition that ifR is finite then char(R) 6=
0.

Example 25. • If R = Z/nZ then char(R) = n.

• If R = Z or R = Q then char(R) = 0.

• If R = Z/3Z× Z/2Z then char(R) = 6 but if

S = {(x, 0) | x ∈ Z/3Z} ⊂ R,

then char(S) = 3.

Lemma 26. If R is a ring with identity 1 and if ordR(1) is finite then

char(R) = ordR(1).

Proof. If n = ordR(1) then

n · r = n · (1 · r) = r · (n · 1) = 0,

for all r ∈ R. Therefore, char(R) divides n If, on the contrary, we assume
char(R) 6= ordR(1) then we must have char(R) = m < n, for some m|n. By
definition of characteristic, we have m · 1 = 0 (since 1 ∈ R), which implies
ordR(1) 6= n. This is a contradiction. �

Theorem 27. If R is an integral domain then either char(R) = 0 or char(R)
is a prime number.

Proof. Suppose char(R) = n 6= 0. Suppose n is not a prime, so n = ab, for
some 1 < a ≤ b < n. Since R is a commutative ring with identity without
zero divisors, 0 = n · 1 = (a cot 1)(b · 1), and therefore a · 1 = 0 or b · 1 = 0.
In either case, we obtain ordR(1) < n. This contradicts Lemma 26. �

18

We have repeatedly used the division algorithm when proving results
about either Z or F [x], where F is a field. We should now ask when a
division algorithm is available for an integral domain.

Definition 28. A Euclidean domain is an integral domain D such that, the
following conditions hold.

(a) There is a Euclidean valuation ν : D → R satisfying (b) and (c) below.

(b) If a, b ∈ D − {0}, then ν(a) ≤ ν(ab).

(c) Let a, b ∈ D with b 6= 0. Then there exist elements q, r ∈ D such that

a = bq + r

and either r = 0 or ν(r) < ν(b).

The integers Z and any polynomial ring in one variable over a field F ,
F [x], are familiar examples of Euclidean domains.

Exercise: Do # 1, 4-5, 9, 11-12, 27, 39 from the book [Ju15], page 202-206.

1.5 Ring homomorphisms and ideals

Let R be a ring.

1.5.1 Ideals

An ideal of R is a special type of subring. The following definition spells this
out more precisely.

Definition 29. An ideal of R is a subset I ⊂ R for which

(a) I is a subring of R,

(b) I is closed under multiplication by elements of R.

Note that if R contains the identity then I cannot, unless of course I = R.
(Indeed, if 1 ∈ I then r = r · 1 ∈ I for each r ∈ R by condition (b) above.)

19

Example 30. There are a few special cases where (a) implies (b). In other
words, there are rings where every subring is actually an ideal.

For example, if R = Z then any subring is closed under addition and
therefore (since n · r = r + . . . + r) also closed under integer multiplication.
For R = Z every ideal is of the form I = aZ, for some a ∈ Z. For example,

(3) = {. . . ,−9,−3, 0, 3, 9, . . .},

is an ideal in Z.

In general, an ideal of R of the form

I = aR = {ar | r ∈ R},

for some fixed a ∈ R is called a principal ideal of R. When the ring R is clear
from the context, it is denoted using the shorthand

I = (a),

and a is called a generator of R.
A ring R is called a principal ideal ring if every ideal is principal, and a

principal ideal domain (PID) if every ideal is principal and R is an integral
domain.

Lemma 31. R = Z is a PID.

Proof. Too easy. �

Note that if I is a principal ideal generated by a then ua is also a generator
for any unit u ∈ R.

More generally, an ideal of R of the form

(a1, . . . , ak) = {a1r1 + . . .+ akrk | ri ∈ R},

for some fixed a1, . . . , ak ∈ R, is called the ideal generated by a1, . . . , ak. An
ideal of this form is called finitely generated.

Any ideal in a polynomial ring (even in several variables) over a field is
finitely generated. This is a very special case of what is called the Hilbert
Basis Theorem. While the proof of this goes way beyond the scope of this
course, it goes to show that finitely generated ideals are very common. Find-
ing “nice” generators of an ideal in a polynomial ring in several variables is
an active area of research called Gröbner basis theory.

20

Example 32. Let R = Z[x, y] and let

I = (x2, y2).

What is this ideal? It is the set of poynomials in x and y of the form

I = {
∑
i,j

aijx
iyj | aij ∈ Z, a0,0 = a1,0 = a0,1 = a1,1 = 0}.

Exercise: Explicitly describe I = (x2, y3).

Bottom line: ideals are a certain type of subring of a ring, and in many
cases can be very explicitly described using generators.

Ideals arise naturally in a number of ways. One of the ways they arise is
via ring homomorphisms.

1.5.2 Quotient rings

Let R be a ring and I ⊂ I be an ideal.
Define the equivalence class of the element a ∈ R by

a = a+ I = {a+ r : rinI}.

This equivalence class is also sometimes written as a (mod I) and called
the residue class of a modulo I. The set of all such equivalence classes is
denoted by R/I, called the quotient ring of R modulo I. It becomes a ring,
if one defines

(a+ I) + (b+ I) = a+ b+ I; (a+ I)(b+ I) = ab+ I.

Example 33. Consider R = Z[x] and I = (x8 − 1. The quotient ring

Z[x]/(x8 − 1)

is the polynomial ring with integer coefficients mod x8 − 1. Addition is the
usual addition of polynomials. However, for polynomials f, g ∈ Z[x]/(x8− 1)
represented by polynomilas of degree ≤ 7, define the · operation (multiplica-
tion) by

f(x) · g(x) =
7∑
i=0

cix
i,

21

where

ck =
7∑
i=0

aibk−i (mod 8), 0 ≤ k ≤ 7.

1.5.3 Ring homs

Let R and S be rings.

Definition 34. A ring homomorphism from R to S is a function

phi : R→ S,

which respects addition and multiplication:

• φ(a+ b) = φ(a) + φ(b), for all a, b ∈ R,

• φ(a · b) = φ(a) · φ(b), for all a, b ∈ R.

Example 35. Let R = Z[x] and S = Z and define φ : R→ S by

φ : a0 + a1x+ . . .+ anx
n 7→ a0.

Exercise: Check this is a ring hom.

Example 36. Let R = Z[x] and S = Z and define φ : R→ S by

φ : a0 + a1x+ . . .+ anx
n 7→ a0 + a1 + . . .+ an.

It’s not immediately obvious, but this is a ring homomomorphism. The reason
why is that φ can be regarded as a special case of the evaluation homomor-
phism. Let S be a ring and let R be any ring of functions f from S to itself.
For a fixed a ∈ S, define

φa : R→ R

by

φa : f 7→ f(a).

Using only the definitions, it is easy to show φa is a ring homomorphism.
The map φ above is the special case R = Z[x], S = Z, and a = 1.

22

Example 37. Let R = Z, let m > 1 be an integer, and let S = Z/mZ.
Define φ : R→ S by

φ : a 7→ a (mod m).

Exercise: Check this is a ring hom.

Example 38. Let R = Z4 and S = M2×2(Z) and define φ : R→ S by

φ : (a, b, c, d) 7→
(
a b
c d

)
.

Exercise: Check this is not a ring hom.

So now you know what rings homs are. What connection do they have
with ideals?

The connection between them is described using the kernel. The kernel
of a ring hom φ : R→ S is defined by

ker(φ) = {r ∈ R | φ(r) = 0}.

Example 39. The kernel of the ring hom φ : Z → Z/mZ, φ : a 7→ a
(mod m), is

ker(φ) = (m) = mZ.

The kernel of the ring hom φ : Z[x]→ Z, φ : a0 + a1x+ . . .+ anx
n 7→ a0,

is

ker(φ) = (x) = xZ[x].

The kernel of the ring hom φ : Z[x] → Z, φ :: a0 + a1x + . . . + anx
n 7→

a0 + a− 1 + . . .+ an, is

ker(φ) = (x− 1) = (x− 1)Z[x].

23

1.5.4 UFDs

Let a, b be elements of a commutative ring with identity, R. We say that a
divides b, and write a|b, if there exists an element c ∈ R such that b = ac.

Definition 40. Let R be an integral domain. A nonzero element p ∈ R −
R× is said to be irreducible if p = ab implies either a ∈ R× or b ∈ R×.
Furthermore, p is prime if whenever p|ab either p|a or p|b.
Remark 3. It is important to notice that prime and irreducible elements do
not always coincide. See [Ju15], page 282.

Lemma 41. Let R be an integral domain. If p ∈ R is a prime element then
p is an irreducible element.

Proof. Suppose p is prime and p = ab, so p|a or p|b. Assume WLOG that
p|a, so that a = dp, for some d ∈ R. We have p = ab = dbp, so by the
cancellation law (Prop. 22), 1 = db. This implies b ∈ R× so p is irreducible.

�

Lemma 42. Let R be either Z or F [x] where F is a field. If p ∈ R is an
irreducible element then p is a prime element.

Proof. Suppose p is irreducible and p|ab, so dp = ab, for some d ∈ R. Con-
sider

I = (p, a) = {xp+ ya | x, y ∈ R}.

This is an ideal in R. For R = Z or R = F [x] this is a principal ideal. Here’s
the proof: Let c ∈ I be a “smallest” non-zero element. In the case R = Z,
pick c > 0 to be the smallest positive integer in I. In the case R = F [x], pick
c to be a non-zero monic polynomial of least degree in I. In either case,

(c) = cR ⊂ I,

but we claim that in fact (c) = I. If not, pick z ∈ I − (c). Now, let r ∈ R be
the remainder upon dividing c into z. Since z = qc+r, we have r = z−qc ∈ I.
If r 6= 0 then r is a “smaller” element in I than c, a contradiction. Therefore
I = (c). Since p ∈ I, this implies p = rc, for some r ∈ R. But p is irreducible,
so either r or c must be a unit. If c ∈ R× then I = R and 1 = xp + ya, for
some x, y ∈ R. Multiply by b to get b = xbp+ yab = xbp+ ydp = (xb+ yd)p.
This implies p|b. On the other hand, if r ∈ R× then I = (p). Since a ∈ I,
this implies a = pr′, for some r′ ∈ R. This implies p|a.

�

24

Definition 43. We call R a unique factorization domain (UFD) if R satisfies
the following criteria.

• Each a ∈ R−R× can be written as the product of irreducible elements
in R.

• The factorization is unique up to ordering of the factors.

For example, the ring of integers Z is a UFD.

1.6 Polynomial rings

Assume R is a commutative ring with identity. Any expression of the form

f(x) = a0 + a1x+ . . . anx
n

where ai ∈ R and an 6= 0, is called a polynomial over R with indeterminate
x of degree n and write deg f(x) = n. The set of all such polynomials is
denoted

R[x].

The elements a0, a1, . . . , an are called the coefficients of f . The (non-zero)
coefficient an is called the leading coefficient. A polynomial is called monic
if the leading coefficient is 1: an = 1.

Suppose

f(x) =
m∑
i=0

aix
i, g(x) =

n∑
i=0

bix
i

belong to R[x]. The set R[x] has a + operation (addition) given by

f(x) + g(x) =
n∑
i=0

(ai + bi)x
i,

where n > m and we set am+1 = . . . = an = 0. It also has a · operation
(multiplication)

f(x) · g(x) =
n+m∑
i=0

cix
i,

25

where

ck = a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0, 0 ≤ k ≤ m+ n.

Again, we set am+1 = . . . = an+m = 0 and bn+1 = . . . = bn+m = 0. These
operations give R[x] are ring structure.

1.6.1 Application: Shamir’s Secret Sharing Scheme

There are t committee members who must make an important unanimous
decision3. These members are far away and must communicate their decision
electronically. Moreover, we want some sort of proof that it is they who made
the decision, not some hacker pretending to be them.

More formally, a secret sharing scheme consists of one dealer and u play-
ers. The dealer gives each player a share of a key K in such a way that any
group of t or more players can together recover K but no group of less than
t players can recover K. Such a system is called a (t, u)-threshold scheme.

Shamir’s secret sharing scheme: Fix integers t and u with 1 < t < u.
Label the players 1, 2, . . . , u. Fix a large prime power q.u, and let K ∈ GF (q)
be the secret key. The dealer key share generation and distribution is follows.
For each i with 1 ≤ i ≤ u, the dealer generates distinct xi ∈ GFq)×. For
each i with 1 ≤ i ≤ t − 1, the dealer randomly generates (not necessarily
distinct) ai ∈ GF (q). The ai are kept secret from everyone, but the xi are
publically known. Define a0 = K and p ∈ GF (q)[x] by

p(x) = pK(x) = a0 + a1x+ a2x
2 + . . .+ at−1x

t−1. (2)

The dealer computes yi = p(xi) and distributes the share

(xi, yi) (3)

to player i.

3For example, they might all need to agree to open a safe and each member only has a
portion of the combination, so without unanimous agreement, the safe cannot be opened.
As another example, you want a committee of doctors in different locations to vote on
whether a patient needs an operation. Each doctor who votes yes enters their password
into a software program. Unless all t passwords are entered, the program will not return
to you a yes vote.

26

The key recovery is this: When any t of the players join their shares
together, the polynomial p(x) can be recovered, so in particular a0 = p(0) =
K can be recovered.

Before we prove why this is true, we give an example.

Example 44. Suppose we have a u = 10 person committee, and t = 6 people
must agree to reveal the key. We call the committee memebers player 1, . . . ,
player 10. They all know q = 11 and the field F = GF (q). Suppose the secret
they share is K = 7. The dealer generates p(x) = 2x5 + 5x4 + x3 + 3x + 7,
where p(0) = K = 7, and computes

x 1 2 3 4 5 6 7 8 9 10
p(x) 7 0 10 1 7 9 10 0 9 6

.

Give player i, the pair (i, p(i)), for i = 1, . . . , 10. Each player knows the
threshold number t = 6, so they can assume that the dealer’s polynomial is
degree 5, say

p(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5,

and they know a0 = K is the key that they are trying to solve for. If players
1, 2, 3, 4, 5, 10 pool together their data, they know

a0 + a1 + a2 + a3 + a4 + a5 = p(1) = 7,

a0 + 2a1 + 4a2 + 8a3 + 5a4 + 10a5 = p(2) = 0,

a0 + 3a1 + 9a2 + 5a3 + 4a4 + a5 = p(3) = 10,

a0 + 4a1 + 5a2 + 9a3 + 3a4 + a5 = p(4) = 1,

a0 + 5a1 + 3a2 + 4a3 + 9a4 + a5 = p(5) = 7,

and
a0 + 10a1 + a2 + 10a3 + a4 + 10a5 = p(10) = 6.

This is a matrix equation A~a = ~b, where

A =


1 1 1 1 1 1
1 2 4 8 5 10
1 3 9 5 4 1
1 4 5 9 3 1
1 5 3 4 9 1
1 10 1 10 1 10

 ,

27

~a = (a0, . . . , a5) is the vector of coefficients, and ~b = (7, 0, 10, 1, 7, 6). This
matrix has non-zero determinant thanks to Lemma 109 on van der Monde
matrices. Solving this matrix equation gives p(x), and hence K. In more

detail, the row-reduced echelon form of the augmented matrix (A |~b) is
1 0 0 0 0 0 7
0 1 0 0 0 0 3
0 0 1 0 0 0 0
0 0 0 1 0 0 1
0 0 0 0 1 0 5
0 0 0 0 0 1 2

 ,

so ~a = (7, 3, 0, 1, 5, 2). This allows us to recover the polynomial that the
dealer generated, 2x5 + 5x4 + x3 + 3x+ 7.

We want to verify the following claim: When any t of the players join
their shares (3) together, the polynomial p(x) in (2), and in particular the
key K, can be recovered.

Actually, we will show how to verify this in two ways.

First method of key recovery: Assume that

a0 + a1xi + a2x
2
i + . . .+ at−1x

t−1
i = yi,

are known for 1 ≤ i ≤ t. This corresponds to a matrix equation A~a = ~b,
where A is a van der Monde matrix A = (xji), ~a = (a0, . . . , at−1) is the vector

of coefficients, and ~b = (y1, . . . , yt). As in the example above, this matrix has
non-zero determinant thanks to Lemma 109. Solving this matrix equation
gives all the coefficients of p(x), in particular the value of a0 = K.

Second method of key recovery: Again, assume that

a0 + a1xi + a2x
2
i + . . .+ at−1x

t−1
i = yi,

are known for 1 ≤ i ≤ t.

Lemma 45. (Lagrange interpolation polynomial) Given k+1 points (t0, u0),
. . . , (tj, uj), . . .,(tk, uk), where no two tj are the same, the polynomial

L(t) =
k∑
j=0

uj`j(t) (4)

28

where

`j(t) =
∏

0 ≤ m ≤ k
m 6= j

t− tm
tj − tm

, 0 ≤ j ≤ k,

satisfies L(ti) = si. It is the unique polynomial of degree k having this prop-
erty.

Proof. The fact L satisfies L(ti) = si for all i is true by inspection. To see
that it is unique, suppose that L(t) and M(t) are two such polynomials.
Then M(t)−L(t) is a polynomial of degree k having k+ 1 zeros. Therefore,
it must be the 0 polynomial.

�

To recover the key using Lagrange interpolation (Lemma 45), simply plug
the xis in for the tis and the yjs in for the ujs. This gives p(x), in particular
the value of a0 = K.

Example 46. We continue with Example 44.
Using Lagrange interpolation, we compute

`1(x) =
∏

a∈{2,3,4,5,10}

(x− a)/(1− a) = 3x5 + 5x4 + 6x3 + 4x2 + 8x+ 8,

`2(x) =
∏

a∈{1,3,4,5,10}

(x− a)/(2− a) = 3x5 + 8x4 + 6x3 + 10x2 + 2x+ 4,

`3(x) =
∏

a∈{1,2,4,5,10}

(x− a)/(3− a) = 9x5 + 3x3 + 3x2 + 10x+ 8,

`4(x) =
∏

a∈{1,2,3,5,10}

(x− a)/(4− a) = 4x5 + 4x4 + 10x3 + 8x2 + 8x+ 10,

`5(x) =
∏

a∈{1,2,3,4,10}

(x− a)/(5− a) = x5 + 2x4 + 3x3 + 7x2 + 7x+ 2,

`10(x) =
∏

a∈{1,2,3,4,5}

(x− a)/(10− a) = 2x5 + 3x4 + 5x3 + x2 + 9x+ 2.

The polynomial generated by the dealer can be recovered using the Lagrange
interpolation formula (Lemma 45):

L(x) = 7`1(x)+0`2(x)+10`3(x)+1`4(x)+7`5(x)+6`10(x) = 2x5+5x4+x3+3x+7.

29

1.6.2 Application: NTRU

The NTRU encryption algorithm is a cryptosystem whose security relies on
the presumed difficulty of factoring certain polynomials in a truncated poly-
nomial ring into a quotient of two polynomials having very small coefficients.

Let N > 1 be an integer and let p > 2, q > 2 be integers (often p = 3
and q is a large integer, such as q = 2048). Let

H = Z[x]/(xN − 1),

and let

Hp = (Z/pZ)[x]/(xN − 1), Hq = (Z/qZ)[x]/(xN − 1).

as a set, we may regard each of these as polynomials of degree N − 1 or less
with coefficients in the appropriate ground ring. For each modulus m > 1,
there is a natural ring homomorphism

modm : H → Hm

a0 + a1x+ . . .+ aN−1x
N−1 → a0 + a1x+ . . .+ aN−1x

N−1,

where ai = ai (mod m). (Of course, we will take m = p or m = q.) When
we represent ai in {0, 1, . . . ,m− 1} then we say ai has the (default) standard
lifting. When we represent ai in (−m/2,m/2] ∩ Z then we say ai has the
0-centered lifting.

Using modp, we sometimes abuse terminology and think of an element of
H as belonging to Hp, when in fact we are really referring to its image under
this map. Conversely, using one of these liftings, we may regard an element
of Hp as an element of H.

Remark 4. One must be very careful in compining these, for different p, q:
the diagram

Z id−−−→ Z

modp

y modq

y
Z/pZ ???−−−→ Z/qZ

does not commute, at least if the maps are all homomorphisms of abelian
groups.

30

For example, take 2016 ∈ Z, p = 3, q = 5. We have modp(2016) = 0,
so the downward map on the left sends 2016 7→ 0. The identity map on the
top sends 2016 7→ 2016. We have modq(2016) = 1, so the downward map on
the right sends 2016 7→ 1. If the map on the bottom did exist then it would
have to send 0 7→ 1. However, no homomorphism of abelian groups sends the
identity element to a non-identity element.

Let f ∈ H be an element which is a unit in both Hp and Hq. Pick another
g ∈ H. In some implementations, the coefficients of both f and g are taken
from {−1, 0, 1}. Let f−1p be the inverse of f in Hp and let f−1q be its inverse
in Hq. The private key is the pair (f, g), known only to Bob. The public key
is the element

h = hN,p,q,f,g = gf−1q ∈ Hq.

For later use, we observe that

f(x)h(x) ≡ g(x) (mod q).

Suppose Alice wants to send a message to Bob. Once Bob computes
the public and private keys, he sends Alice the public key. Alice converts
her message into a polynomial m ∈ H and then secretly picks a random
polynomial b (the “blinding value”, known only to Alice). She then computes

c = p · b · h+m ∈ Hq. (5)

This is the ciphertext she sends Bob.

Note that the encryption simply adds to the message an element of the
ideal (h(x)), which is supposed to look like noise. This is not a problem
is h(x) is relatively prime to xN − 1, since then this ideal is all of H. If
gcd(h(x), xN − 1) 6= 1 then (h(x)) 6= H and m(x) is not well-disguised.

To decrypt, compute f(x)c(x) in Hq. Next, lift f(x)c(x) to H using the
0-centered representation, then compose with modp to place the result in Hp.
Now multiply this by f−1p (x):

f−1p (x)f(x)c(x)

in Hp. For suitably choosen p and q and N , this agrees with m(x) (mod p)
with a high degree of probability.

31

Example 47. Let

N = 3, p = 3, q = 5, f(x) = x2 + 1, g(x) = x2 + 2x+ 1.

Based on (7), to compute f−1p (x), we must solve 1 1 0
0 1 1
1 0 1

 a0
a1
a2

 =

 1
0
0


Since  1 1 0

0 1 1
1 0 1

−1 =

 2 1 2
2 2 1
1 2 2

 ,

the coefficients of f−1p (x) are a0
a1
a2

 =

 2 1 2
2 2 1
1 2 2

 1
0
0

 =

 2
2
1

 .

Therefore, we have

f−1p (x) = x2 + 2x+ 2 = x2 − x− 1 ∈ Hp,

f−1q (x) = 2x2 + 3x+ 3 = 2(x2 − x− 1) ∈ Hq,

and

h(x) = x2 + x ∈ Hq.

If

b(x) = x4 + 7x2 − 2, m(x) = 2x2 − x+ 1,

then pb(x)h(x) = 2x2 + 4 = 2x2 − 1 ∈ Hq. Therefore,

c(x) = 2x2 − 1 + 2x2 − x+ 1 = −x2 − x

is the ciphertext.

32

Example 48. Let

N = 3, p = 3, q = 101.

In

Hp = (Z/pZ)[x]/(xN − 1),

we let f(x) = x2 + 1. Its inverse is denoted

f−1p (x) = x2 + 2x+ 2.

In

Hq = (Z/qZ)[x]/(xN − 1),

its inverse is denoted

f−1q (x) = 50x2 + 51x+ 51.

Let

m(x) = x2 − 2x− 2,

b(x) = 1− x,

and let
g(x) = x2 + x+ 1.

We compute
h(x) = g(x)f−1q (x) = 51x2 + 51x+ 51

in Hq. Let

c(x) = p · b(x)h(x) +m(x) = x2 − 2x− 2

in Rq. This is the ciphertext4

To decrypt, compute fc in Hq:

f(x)c(x) = −x2 − x− 4.

4It is too similar to m(x), presumably indicating a poor choice of the “blinding value”
b(x).

33

Now multiply this by f−1p (x):

f−1p (x)f(x)c(x) = x2 + x+ 1

in Hp. This agrees with m (mod p).
Another example, with a different blinding value helps. Same N , p, q,

f(x) and g(x). Therefore h(x) is also unchanged.
Take

m(x) = x2 − x+ 1 ∈ Hq,

for the plaintext, and pick the blinding value b(x) = 1 + x + x2 ∈ Hq. The
ciphertext is

c(x) = b(x)h(x)+m(x) = 49x6+49x5+55x3+7x2+54x+53 = 56x2+54x+56

in Hq. To decrypt, compute fc in Hq:

f(x)c(x) = 11x2 + 9x+ 9.

Now multiply this by f−1p (x):

f−1p (x)f(x)c(x) = x2 + 2x+ 1.

We have recovered the plaintext m(x).

If

h(x) = h0 + h1x+ . . .+ hkx
N−1,

we associate to h the circulant matrix

MatN(h) =


h0 hN−1 . . . h1
h1 h0 . . . h2
...

...
hN−1 hN−2 . . . h0

 (6)

and define vecN(h) to be the last row of MatN(h):

vecN(h) = (h0, . . . , hN−1).

In the ring H = Z[x]/(xN − 1), the notation of (5), we have

vecN(bh) = MatN(h)vecN(b). (7)

34

1.6.3 Application: Modified NTRU

Next, we give a modified version of NTRU, following Damien Stehlé and
Ron Steinfeld, Making NTRUEncrypt and NTRUSign as Secure as Worst-
Case Problems over Ideal Lattices, Eurocrypt2011 proceedings. This slight
variation is provable hard and (so far) is quantum resistant.

Fix integers N, p, q where N > 1 is a power of 2, p > 1 (typically p = 3),
q > p and gcd(p, q) = 1. Let

H = Z[x]/(xN + 1),

Hp = (Z/pZ)[x]/(xN + 1), and Hq = (Z/qZ)[x]/(xN + 1). As before, we may
regard each of these, regarded as a set, as polynomials of degree N−1 or less
with coefficients in the appropriate ground ring. For each modulus m > 1,
there is a natural ring homomorphism

modm : H → Hm

a0 + a1x+ . . .+ aN−1x
N−1 → a0 + a1x+ . . .+ aN−1x

N−1,

where ai = ai (mod m). (Of course, we will take m = p or m = q.) Using
this, we sometimes abouse terminology and think of an element of H as
belonging to Hp, when in fact we are really referring to its image under this
map.

Let f ∈ H be an element which is a unit in both Hp and Hq. Let f−1p
be its inverse in Hp and f−1q be its inverse in Hq. Pick another g ∈ H.
The private key is the pair (f, g), known only to Bob. The public key is the
element

h = hN,p,q,f,g = gf−1q ∈ Hq.

Suppose Alice wants to send a message to Bob. Once Bob computes
the public and private keys, he sends Alice the public key. Alice converts
her message into a polynomial m ∈ H and then secretly picks a random
polynomial b (the “blinding value”, known only to Alice). She then computes

c = p · b · h+m ∈ Hq. (8)

This is the ciphertext she sends Bob.

Note that the encryption simply adds to the message an element of the
ideal (h(x)), which is supposed to look like noise. This is not a problem

35

is h(x) is relatively prime to xN + 1, since then this ideal is all of H. If
gcd(h(x), xN + 1) 6= 1 then (h(x)) 6= H and m(x) is not well-disguised.

Decryption is the same as in the unmodified case: compute f(x)c(x) in
Hq, then lift fc to H using the 0-centered representation, Now multiply this
by f−1p (x):

f−1p (x)f(x)c(x)

in Hp. For suitably choosen p and q and N , this agrees with m(x) (mod p)
with a high degree of probability.

Example 49. Let

N = 4, p = 3, q = 5, f(x) = x2 + 1, g(x) = x2 + 2x+ 1.

Based on (9), to compute f−1p (x), we must solve
1 0 2 0
0 1 0 2
1 0 1 0
0 1 0 1




a0
a1
a2
a3

 =


1
0
0
0

 ,

over Z/3Z. Since 
1 0 2 0
0 1 0 2
1 0 1 0
0 1 0 1


−1

=


2 0 2 0
0 2 0 2
1 0 2 0
0 1 0 2

 ,

we have 
a0
a1
a2
a3

 =


2
0
1
0

 ,

so we have

f−1p (x) = x2 − 1 ∈ Hp.

Likewise, over Z/5Z, we have

36


1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1


−1

=


3 0 3 0
0 3 0 3
2 0 3 0
0 2 0 3

 ,

so we have
f−1q (x) = 2(x2 − 1) ∈ Hq,

and

h(x) = −x3 + x+ 1 ∈ Hq.

If

b(x) = x4 + 7x2 − 2, m(x) = 2x2 − x+ 1,

then pb(x)h(x) = x2 + 2x+ 1 ∈ Hq. Therefore,

c(x) = x2 + 2x+ 1 + 2x2 − x+ 1 = −2x2 + x+ 2

is the ciphertext.
Some Sagemath code verifying this is below:

Sagemath

sage: p = 3; q = 5
sage: PRq.<xq> = PolynomialRing(IntegerModRing(q), "xq")
sage: PRp.<xp> = PolynomialRing(IntegerModRing(p), "xp")
sage: R2.<x> = PolynomialRing(ZZ, "x")
sage: QR = QuotientRing(R2, R2.ideal(xˆ4+1))
sage: fq = 2*(xqˆ2-1)
sage: g = xqˆ2 + 2*xq + 1
sage: fq*g # this is h, the public key
2*xqˆ4 + 4*xqˆ3 + xq + 3
sage: QR(2*xˆ4 + 4*xˆ3 + x + 3)
4*xbarˆ3 + xbar + 1
sage: b = xqˆ4+7*xqˆ2-2 # this is the blinding value
sage: p*b*(4*xqˆ3 + xq + 1)
2*xqˆ7 + 2*xqˆ5 + 3*xqˆ4 + 2*xqˆ3 + xqˆ2 + 4*xq + 4
sage: QR(2*xˆ7 + 2*xˆ5 + 3*xˆ4 + 2*xˆ3 + xˆ2 + 4*x + 4)
xbarˆ2 + 2*xbar + 1

More generally, let H = Z[x]/(xN−c), so taking c = −1 give the modified
case discussed above. If

37

h(x) = h0 + h1x+ . . .+ hkx
N−1,

we associate to h the quasi-circulant5 matrix

MatN(h) =


h0 chN−1 . . . ch1
h1 h0 . . . ch2
...

...
hN−1 hN−2 . . . h0


and define vecN(h) to be the first column of MatN(h):

vecN(h) = (h0, . . . , hN−1).

In the ring H = Z[x]/(xN + c), we have

vecN(bh) = MatN(h)vecN(b). (9)

In general,

(
N−1∑
i=0

bix
i)(

N−1∑
j=0

hjx
j) = (

N−1∑
j=0

pjx
j,

where

pk =
∑

i,j i+j≡k (mod N)

bihjεi,j,

where

εi,j =

{
1, i+ j ≤ N − 1,
c, i+ j > N − 1.

5All the upper diagonal entries have been multiplied by c but otherwise, the ith row is
the right cyclic shift of the i− 1st row.

38

1.6.4 Application to LFSRs

For some of the material below, we follow Chapter 2 in Klein [Kl13].
Stream ciphers
Pseudo-random number generators have been used for a long time as a

source of stream ciphers.
S. Golomb gives a list of three statistical properties a sequence of numbers

a = {an}∞n=0, an ∈ {0, 1}, should display to be considered “random”. Define
the autocorrelation of a to be

C(s) = C(s, a) = lim
N→∞

1

N

N∑
n=0

(−1)an+an+s .

In the case where a is periodic with period P then this reduces to

C(s) =
1

P

P−1∑
n=0

(−1)an+an+s .

Assume a is periodic with period P .

balance: |
∑P−1

n=0 (−1)an| ≤ 1.

low autocorrelation:

C(k) =

{
1, k = 0,
ε, k 6= 0.

(For sequences satisfying these first two properties, it is known that
ε = −1/P must hold.)

proportional runs property: In each period, half the runs have length
1, one-fourth have length 2, etc. Moveover, there are as many runs of
1’s as there are of 0’s.

Definition 50. A general feedback shift register is a map f : GF (q)d →
GF (q)d of the form

f(x0, ..., xn−1) = (x1, x2, ..., xn),
xn = F (x0, ..., xn−1),

where C : FF (q)d → GF (q) is a given function. When F is of the form

39

F (x0, ..., xn−1) = a0x0 + ...+ an−1xn−1,

for some given constants ai ∈ GF (q), the map is called a linear feedback shift
register (LFSR).

Example 51. Let

f(x) = a0 + a1x+ ...+ anx
n + ...,

g(x) = b0 + b1x+ ...+ bnx
n + ...,

be given polynomials in GF (2)[x] and let

h(x) =
f(x)

g(x)
= c0 + c1x+ ...+ cnx

n +

We can compute a recursion formula which allows us to rapidly compute the
coefficients of h(x) (take f(x) = 1):

cn =
n∑
i=1

−bi
b0
cn−i.

This is a linear feedback shift register sequence.
For instance, if

f(x) = 1, g(x) = x4 + x+ 1,

then
h(x) = 1 + x+ x2 + x3 + x5 + x7 + x8 +

The coefficients of h are

1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,

The sequence of 0, 1’s is periodic with period P = 24 − 1 = 15 and satisfies
Golomb’s three randomness conditions.

More generally, the situation is described by the following fact.

40

Theorem 52. If c = {cn}∞n=1 are the coefficients of f(x)/g(x), where f, g ∈
GF (q)[x] and g(x) is an irreducible polynomial with x primitive (mod g(x))
(i.e., x generates (GF (q)[x]/g(x)GF (q)[x])×). Then c is periodic with period
P = qd−1 (where d is the degree of g(x)). If q = 2 then the sequence satisfies
Golomb’s randomness conditions.

We shall define primiative later (see Definition 60).
Write an LFSR {ak}∞k=0 as

ad+i =
d−1∑
j=0

cjai+j, i = 0, 1, (10)

Let

A(z) =
∞∑
k=0

akz
k,

so

∞∑
i=0

ad+iz
i =

d−1∑
j=0

cj

∞∑
i=0

ai+jz
i,

and therefore,

∞∑
i=0

ad+iz
i+d =

d−1∑
j=0

cjz
d−j

∞∑
i=0

ai+jz
i+j.

Note that
∑∞

i=0 ad+iz
i+d and

∑∞
i=0 ai+jz

i+j each differ from A(z) by a poly-
nomial. Therefore,

A(z)−
d−1∑
j=0

cjz
d−jA(z) = f(z),

for some polynomial f(z) of degree at most d− 1. This proves the following
fact.

Lemma 53. The generating function A(z) for the LFSR {ak}∞k=0 satisfies

A(z) =
f(z)

g(z)
,

41

where

g(z) = 1−
d−1∑
j=0

cjz
d−j.

The polynomial g(z) in the Lemma above is called the connection poly-
nomial. If

p(z) = b0 + b1z + . . .+ bnz
n

is any polynomial, we call

p∗(z) = znp(1/z) = b0z
n + b1z

n−1 + . . .+ bn,

the reciprocal polynomial. The reciprocal of the connection polynomial is
called the feedback polynomial:

g∗(z) = zn −
d−1∑
j=0

cjz
j.

Assume the feedback polynomial has no multiple roots (more on this
assumption later) and let ξ1, . . . , ξn be the different zeros of g∗(z). These all
belong to some finite extension of GF (q), namely GF (qn). Then we get a
partial fraction decomposition

A(z) =
f(z)

g(z)
=

n∑
j=1

dj
1− ξjz

,

for some numbers dj belonging to GF (qn). Using the geometric series ex-
pansion for 1

1−ξjz , we have

A(z) =
n∑
j=1

dj
1− ξjz

=
n∑
j=1

∞∑
k=0

djξ
k
j z

k =
∞∑
k=0

(
n∑
j=1

djξ
k
j)zk.

This gives us the formula for the kth term in the LFSR sequence:

ak =
n∑
j=1

djξ
k
j . (11)

Let’s go back and discuss the assumption that the feedback polynomial
has no multiple roots. Over finite fields (and over fields of characteristic 0,
such as Q), it turns out that every irreducible polynomial has distinct roots.
Therefore, we have the following fact.

42

Lemma 54. If the LFSR {ak}∞k=0, ai ∈ GF (q), has an irreducible feedback
polynomial with roots ξ1, . . . , ξd then (11) holds for some dj belonging to the
finite extension GF (qd).

In fact, a bit more is true. We can show that, moreover, the dj are
uniquely determined by the ak. This is true because the matrix Ξ = (ξkj)i≤j,k≤d
is a Van der Monde matrix, hence is invertible. Therefore, the equations (11),
1 ≤ k ≤ d, can be converted into an d × d system of linear equations for
which the dj are uniquely determined by the ak.

We need more information on finite fields to prove more.

2 Structure of finite fields

We’d like to prove that there is a simple formula for the terms in a LFSR,
such as in the following result.

Theorem 55. Let (ak) be a LFSR sequence as in (10) with an irreducible
feedback polynomial of degree d. If ξ is some zero of the feedback polynomial
then

ak = TrGF (qn)/GF (q)(αξ
k),

for some α ∈ GF (qd) .

2.1 Cyclic multiplicative group

Before we can prove Theorem 55, we need to know more facts about finite
fields (such as the definition of TrGF (qn)/GF (q)).

Lemma 56. Let R = GF (q), where q > 1 is a given prime power. We have

aq−1 = 1,

for all non-zero a ∈ GF (q). Consequently,∏
a∈GF (q)×

(x− a) = xq−1 − 1.

Proof. We use the method in the proof of Lemma 6.... �

43

For a (multiplicative) group G and an element g ∈ G, let ordG(g) denote
the smallest integer d > 0 for which gd = 1, if it exists.

Lemma 57. If y ∈ G has order d, a power yk has order d if and only if k is
relatively prime to d.

Proof. Let y ∈ G have order d and yk have order d. If gcd(k, d) = h > 1
then (yk)d/h = 1, a contradiction.

Conversely, let gcd(k, d) = 1 and y have order d. If (yk)m = 1, for some
0 < m < d, then let km = qd + r, for some 0 < r < d. (Note r = 0 is
impossible since gcd(k, d) = 1.) Then 1 = (yk)m = ykm = (yd)qyr = yr. This
contradicts ordG(y) = d. �

Lemma 58. Let G a finite group with n elements. If for every d|n we have

|{g ∈ G | gd = 1}| ≤ d,

then G is cyclic.

This lemma is well-known but the proof below is very short and clever. It
was found in a math.stackexchange.com thread authored by Andrea Petracci.

Proof. Fix d|n and consider the set

Gd = {x ∈ G | orgG(x) = d},

made up of elements of G with order d. Suppose that Gd 6= ∅, so there exists
y ∈ Gd. It’s clear that

〈y〉 = {1, y, y2, . . . , yd−1} ⊂ {g ∈ G | gd = 1}.

Since y has order d, the subgroup 〈y〉 has cardinality d so

d = |〈y〉| ⊂ |{g ∈ G | gd = 1}| ≤ d,

by hypothesis. Therefore, 〈y〉 = {g ∈ G | gd = 1}. Since this holds for each
y ∈ Gd, Gd is the set of generators of the cyclic group {g ∈ G | gd = 1}
of order d. By the Lemma above, a power yk has order d if and only if k
is relatively prime to d. Therefore, Gd has φ(d) elements6, namely those yk

with gcn(k, n) = 1.

6Recall, φ is the Euler phi-function, which counts integers relatively prime to a given
integer.

44

We have proved that Gd is empty or has cardinality φ(d), for every d|n.
So we have:

n = |G| =
∑
d|n

|Gd| ≤
∑
d|n

φ(d) = n.

Therefore |Gd| = φ(d) for every d|n. In particular Gn 6= ∅.
This proves that G is cyclic. �

While the group of units of Z/nZ, i.e., (Z/nZ)×, is not cyclic in general,
the group of units of GF (q), i.e., GF (q)×, is always cyclic.

Proposition 59. GF (q)× is cyclic.

Definition 60. A generator of the cyclic group GF (q)× is called a primitive
element.

In particular, if f(x) ∈ GF (q)[x] is an irreducible polynomial of degree d
then the representative x = x + (f(x)) = x + f(x)GF (q)[x] is primitive in
GF (qd) = GF (q)[x]/f(x)GF (q)[x] if and only if xj (mod f(x)) is non-zero
for all j with 1 ≤ j ≤ qd − 2.

Proof. Let G = GF (q)× and we ask for a simple bound on the subset

{g ∈ G | gd = 1}.

For any integer d ≥ 1, the polynomial xd− 1 can have at most d roots (in an
extension field of GF (q), and hence in G), so

|{x ∈ G | xd = 1}| ≤ d.

Therefore, Lemma 58 applies and so G is cyclic.
�

2.2 Extension fields

Suppose that we have two finite fields, say GF (q1) and GF (q2). If one is
contained in the other, is there a relationship between q1 and q2? Suppose

GF (q1) ⊂ GF (q2),

that is, the field operations (+ and ·) on GF (q2) restricted to GF (q1) give
the field operations (+ and ·) on GF (q1). This implies that V = GF (q2) is
a vector space over F = GF (q1), i.e., satisfies the following definition.

45

Definition 61. Let F be a field and V be a set with operations + : V ×V →
V , written + : (u,v) 7−→ u+v, and · : F ×V → V , + : (a,v) 7−→ a ·v. V is
called a vector space over F (or an F -vector space) if the following properties
hold. For all u,v,w ∈ V and a, b ∈ F ,

• u + v = v + u (commutativity)

• (u + v) + w = u + (v + w) (associativity)

• the vector 0 = (0, 0, ..., 0) ∈ V satisfies u + 0 = u (the zero vector 0 is
the additive identity),

• for each v ∈ V the element (−1)v = −v ∈ V satisfies v + (−v) = 0
(each element v has an additive inverse −v)

• (a+ b)v = av + bv and a(v + w) = av + aw (distributive laws)

• (ab)v = a(bv)

• 1 · v = v.

Suppose V is has dimension d, as an F -vector space. Then, as a vector
space, V ∼= F d, which implies |V | = qd. This proves the following fact.

Lemma 62. If GF (q1) and GF (q2) are finite fields and if

GF (q1) ⊂ GF (q2),

then there is a d ≥ 1 such that q2 = qd1.

If F1 and F2 are fields and if the field operations (+ and ·) on F2 restricted
to F1 give the field operations (+ and ·) on F1, then we write

F1 ⊂ F2 or F2/F1 or F1\F2,

and we call F2 a field extension of F1.

Example 63. For example, define

GF (9) = {0, 1, 2, x, 2x, x+ 1, x+ 2, 2x+ 1, 2x+ 2},

with addition and multiplication (mod x2 + 1) in GF (3)[x]. In this case,
GF (3) and GF (9) are finite fields, each of characteristic 3, and

46

GF (3) ⊂ GF (9).

However, there is no way to define GF (27) in such a way that

GF (9) ⊂ GF (27).

To prove Theorem 65 given later, we need the following analog of Bezuot’s
lemma.

Lemma 64. (Bezout’s Lemma for polynomials) Let F be a field. For any
polynomials a(x) and b(x) in F [x], there are polynomials u(x) and v(x) sat-
isfying

a(x)u(x) + b(x)v(x) = gcd(a(x), b(x)).

The proof of this lemma is the same as that of Lemma 4, but is included
for completeness.

Proof. Consider the ideal

(a(x), b(x)) = {r(x)a(x) + s(x)b(x) | r ∈ F [x], s ∈ F [x]}.

Since d(x) = gcd(a(x), b(x)) divides a(x) and b(x), this ideal (a(x), b(x))
must be contained in the ideal

(d(x)) = {t(x)d(x) | t(x) ∈ F [x]},

i.e., (a(x), b(x)) ⊂ (d(x)).
Suppose now (d(x)) 6= (a(x), b(x)). Let n(x) be the polynomial of smallest

non-zero degree such that

n(x) ∈ (a(x), b(x)),

written n(x) = a(x)u(x)+b(x)v(x). By the integer “long division” algorithm,
there is a remainder r(x) (of smaller degree than d(x)) and a quotient q(x)
such that n(x) = q(x)d(x) + r(x). But r(x) = n(x) − q(x)d(x) ∈ (d(x)),
so either r(x) = 0 (so (d(x)) 6= (a(x), b(x)) is false) or r(x) is a multiple of
d(x) (so r(x) is smaller degree than d(x) is false). This is a contradiction.
Therefore, (d(x)) = (a(x), b(x)). �

47

Of more immediate concern for us is the algorithm to compute the inverse
of c(x) (mod p)(x): Assume gcd(c(x), p(x)) = 1 and compute u(x), v(x)
such that c(x)u(x) + p(x)v(x) = 1 via Bezuot’s Lemma for polynomials. We
have u(x) (mod p(x)) = c(x)−1 (mod p(x)).

Next, we prove the following theorem.

Theorem 65. The quotient ring K = GF (q)[x]/(p(x)) is an extension field
of GF (q) with qd elements if and only if p(x) is an irreducible polynomial
over GF (q) of degree d.

Proof. First, if p(x) is a polynomial of degree d then GF (q)[x]/(p(x)) can be
represented by all the polynomials of degree d− 1 or less:

GF (q)[x]/(p(x)) = {a0 + a1x+ . . . akx
k | k < d, ai ∈ GF (q)},

as sets. There are qd elements in this set.
Second, if p(x) is not irreducible over GF (q), say p(x) = f(x)g(x), then

GF (q)[x]/(p(x)) has zero divisors (namely, f(x)g(x) = 0 inGF (q)[x]/(p(x))),
so it cannot be a field.

These last two paragraphs prove that “K = GF (q)[x]/(p(x)) is an exten-
sion field of GF (q) with qd elements only if p(x) is an irreducible polynomial
over GF (q) of degree d” is true.

To prove the other direction, assume p(x) is an irreducible polynomial
over GF (q) of degree d. Let c(x) be any polynomial of degree k, 0 < k <
d. We shall show that c(x) is invertible in GF (q)[x]/(p(x)). Since p(x)
is irreducible, c(x) and p(x) are relatively prime. By Bezout’s Lemma for
polynomials, we can compute u(x), v(x) such that c(x)u(x) + p(x)v(x) = 1.
Therefore, we have u(x) (mod p(x)) = c(x)−1 (mod p(x)). Since every
non-zero element of GF (q)[x]/(p(x)) is invertible, it must be a field. �

Let f(x) ∈ GF (q)[x] be an irreducible polynomial of degree d and let
GF (qd) = GF (q)[x]/f(x)GF (q)[x].

Note that xq − 1 = 0 has all its roots in GF (q) (see Lemma 56). More
generally, let k be an integer with 1 < k < d. Again, by Lemma 56, xq

k−1 = 0
has all its roots in GF (qk). In particular, if a ∈ GF (qd) is a root of xq

k−1 = 0
then a ∈ GF (qk).

Lemma 66. The roots of f(x) ∈ GF (q)[x] can be represented by xqj =
xq

j
+ (f(x)) = xq

j
+ f(x)GF (q)[x] in GF (qd) = GF (q)[x]/f(x)GF (q)[x], for

0 ≤ j ≤ d− 1.

48

Proof. Let F(a) = aq, for a ∈ GF (qd). First, we claim that this map (called
a Frobenius map) defines a field automorphism

F : GF (qd)→ GF (qd),

for which F(a) = a if and only if a ∈ GF (q). To prove this, we must show
that, for all a, b ∈ GF (qd),

• F(a+ b) = F(a) + F(b), and

• F(a · b) = F(a) · F(b).

The second property is obvious. To verify the first property, note q is a power
of some prime number p. Now, expand out

F(a+ b) = (a+ b)q =

q∑
i=0

(
q
i

)
aibq−i,

which is equal to F(a) · F(b) plus a bunch of terms having a binomial coeffi-

cient

(
q
i

)
6= 1. Writing out each binomial coefficient in terms of factorials,

it’s easy to see that each of these binomial coefficients is divisible by p. But
any multiple of p is 0 in GF (qd). This proves the first property.

Therefore, the Frobenius map defines a field automorphism. Moreover,
by the discussion preceeding the statement of the lemma, we see that, for any
a ∈ GF (qd), we have F(a) = a if and only if a ∈ GF (q). More generally, if
1 ≤ k ≤ d, for any a ∈ GF (qd), we have Fk(a) = a if and only if a ∈ GF (qk).

Consider now the roots of

f(x) = a0 + a1x+ . . .+ adx
d.

Since the coefficients ai are in GF (q), we have

F(f(x)) = F(a0 + a1x+ . . .+ adx
d) = a0 + a1x

q + . . .+ adx
dq

= a0 + a1F(x) + . . .+ adF(xd) = f(F(x)).

for any x ∈ GF (qq). In particular, F sends each root of f(x) to another one.
There are d roots of f(x) = 0 and there are d distinct elements in the list x,
F(x) = xq, F2(x) = xq

2
, . . . , Fd−1(x) = xq

d−1
. �

49

Example 67. Consider the field extension

GF (8) = GF (2)][x]/(x3 + x+ 1)GF (2)[x],

defined by the irreducible primitive polynomial x3 + x+ 1.
If

a = 0, b = x, c = x2, d = x3 = x+ 1, e = x4 = x2 + x,

f = x5 = x2 + x+ 1, g = x6 = x2 + 1, h = x7 = 1,

then the multiplication table is given by

∗ a b c d e f g h
a a a a a a a a a
b a c d e f g h b
c a d e f g h b c
d a e f g h b c d
e a f g h b c d e
f a g h b c d e f
g a h b c d e f g
h a b c d e f g h

and the addition table by

+ a b c d e f g h
a a b c d e f g h
b b a e h c g f d
c c e a f b d h g
d d h f a g c e b
e e c b g a h d f
f f g d c h a b e
g g f h e d b a c
h h d g b f e c a

It is not hard to check that a, a2, a4 = a2 + a are roots of x3 + x + 1 = 0
in GF (8).

2.3 Back to the LFSR

We finish the proof of Theorem 55.

50

Recall, (ak) is a LFSR sequence as in (10) with an irreducible feedback
polynomial, f(x), of degree d. We must verify that, for each root ξ of f ,
there is an α ∈ GF (qd) such that

ak = TrGF (qd)/GF (q)(αξ
k). (12)

We’ve already established that (11) is true, i.e., that ak =
∑n

j=1 djξ
k
j , for

some unique dj ∈ GF (qd).
Since the feedback polynomial is irreducible, its zeros have the form

Fri(ξ), 0 ≤ i ≤ d − 1, where ξ = ξ1 and Fr is the Frobenius automor-
phism of GF (qd) (Fr : a→ aq). Since aj ∈ GF (q), we have Fr(aj) = aj, for
all j. Therefore, for each i,

ak =
n∑
j=1

djFr
j(ξ)k =

n∑
j=1

Fri(dj)Fr
i+j(ξk).

Since the sum is unique, d2 = Fr(d1), d3 = Fr(d2) = Fr2(d1), This
implies (12), which completes the proof of Theorem 55.

A binary LFSR sequence which has key length d has period at most 22−1.
Those of maximal period are also called m-sequences. We say b ∈ GF (2)`

occurs in (ak) if there is a sequence of consecutive terms am, am+1, . . . , am+`−1
which agrees with b. A sequence of consecutive ones is called a block and a
sequence of consecutive zeros is called a gap. A run is either a block or a gap.
A sequence of consecutive terms of length d, am, am+1, . . . , am+d−1 is called a
state of (ak).

Assume q = 2 and that P = 2d − 1 is the period of the LFSR sequence
(ak). For each b ∈ GF (2)`, let N(b) denote the number of times that b occurs
in a period of (ak).

In §1.6.4, we stated some statistical properties that Solomon Golomb
formulated to quantify a pseudo-random sequence of 0s and 1s. These are
reformulated below, following Klein [Kl13].

Definition 68. (G1) In every period, the sequence is well-balanced, i.e., the
number of ones is nearly equal to the number of zeros. More precisely,
we have

|
∑P−1

k=0 (−1)ak | ≤ 1.

This is the balanced property or the distribution test.

51

(G2) Then for any k with 1 ≤ k ≤ d− 1, we have

|N(b)−N(b′)| ≤ 1,

for any b, b′ ∈ GF (2)k.

This is the serial test.

(G2’) In each period, half the runs have length 1, one-fourth have length 2,
and so on for all lengths ≤ d− 1. Moveover, there are nearly as many
blocks of length k as there are gaps of length k.

This is the proportional runs property.

(G3)

C(k) =

{
1, k = 0,
ε, k 6= 0,

where ε = −1/P .

This is the low autocorrelation property or auto-correlation test.

In the remainder of this section, We prove that there are lots of LFSR
sequence which satisfy the properties above.

Lemma 69. The states of any binary LFSR (ak) with maximal period P =
2d − 1 run through all elements of GF (2)d − {~0}.

Proof. Suppose not.
The states (am, am+1, . . . , am+d−1) are contained in GF (2)d. Moreover, no

state can be ~0, for otherwise the recursive equation defining (ak) would force
all the terms to be 0 from that point on. Therefore, (am, am+1, . . . , am+d−1) ∈
GF (2)d − {~0}, and so there are at most 2d − 1 possible states.

If some d-tuple does not occur as a state then the 2d − 1 subsequences
(am, am+1, . . . , am+d−1), 0 ≤ m ≤ P − 1, must contain a repetition. However,
if a state is repeated, say (a`, a`+1, . . . , a`+d−1) = (am, am+1, . . . , am+d−1), then
the recursive equation defining (ak) would force the period to be m− ` < P .
This is a contradiction.

�

52

Example 70. Consider the LFSR sequence with key k = (1, 0, 0, 1) defined
by

an+4 = an+3 + an,

with a0 = 1, a1 = 1, a2 = 0, a3 = 1. The sequence (ak) is

1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, . . . ,

and has period P = 15. The associated primitive polunomial is x4 + x + 1.
The first 15 states are

(1, 1, 0, 1), (1, 0, 1, 0), (0, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 0),

(1, 1, 0, 0), (1, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0),

(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 0).

As Lemma 69 predicts, all possible non-zero 4-tuples of 0s and 1s are achieved.

We mention a few immediate consequences of Lemma 69. First, we claim
that N(b) = 2d−k for all b ∈ GF (2)k with b 6= ~0 and k ≤ d − 1. Indeed,
counting the times b has occured in a state is, because of Lemma 69, the same
as counting the number of ways to complete b into an element ofGF (2)d−{~0}.
This is 2d−k, which proves the claim. Second, we claim that N(b) = 2d−k− 1
for b~0 ∈ GF (2)k and k ≤ d − 1. Indeed, counting chithe number of ways to
complete b = ~0 ∈ GF (2)k into an element of GF (2)d − {~0} gives 2d−k − 1
since the all-0 vector in GF (2)d is not allowed. This proves the second claim
and establishes the following fact.

Lemma 71. For all b ∈ GF (2)k with k ≤ d− 1, we have

N(b) =

{
2d−k, b 6= ~0,

2d−k − 1, b = ~0.

For example, this Lemma tells us (a) if b = 1 ∈ GF (2)1 then the number
of 1s in a period is N(1) = 2d−1, (b) if b = 0 ∈ GF (2)1 then the number of
0s in a period is N(0) = 2d−1 − 1. Therefore,

P−1∑
k=0

(−1)ak = N(0)−N(1) = −1.

53

This establishes (G1) in Definition 68.
Lemma 71 also tells us, for any two b, b′ ∈ GF (2)k that N(b) = N(b′) is

either 2d−k− 2d−k = 0, 2d−k− (2d−k− 1) = 1 or (2d−k− 1)− 2d−k = −1. This
establishes (G2) in Definition 68.

Furthermore, Lemma 71 gives us a quantitative sense for which the fol-
lowing is true: the number of runs have length k−1 is nearly half the number
of runs of length k, for all lengths k ≤ d − 1. Moreover, there are nearly as
many blocks of length k as there are gaps of length k. This establishes (G2’)
in Definition 68.

By Theorem 55, we have

ak = TrGF (2d)/GF (2)(α1ξ
k),

for a primitive element ξ ∈ GF (2d) and some α1 ∈ GF (2d), and a

ak+s = TrGF (2d)/GF (2)(α2ξ
k),

for some α2 ∈ GF (2d). Thus the sequence (a′k) defined by

a′k = ak + ak+s = TrGF (2d)/GF (2)((α1 + α2)ξ
k),

is either all 0s (if α1 +α2 = 0) or else is a binary sequence of maximal period
2d−1. It can only be all 0s if s is an integer multiple of the period P = 2d−1,
or else the period of (ak) would not be maximal. Since (G3) clearly holds
when s = 0, we may assume s is not an integer multiple of the period. In
this case, we can apply the argument above to show that the sequence (a′k)
satisfies (G1). But then we have

P−1∑
k=0

(−1)a
′
k = −1.

This implies C(s) = −1/P and therefore we have established (G3) in Defi-
nition 68.

Example 72. If the key is k = (1, 0, 1, 1) then the recursion equation defining
the LFSR is

an+1 = k3an + k2an−1 + k1an−2 + k0an−3 = an + an−1 + an−3.

54

Taking as the initial values a0 = 0, a1 = 1, a2 = 1, a3 = 1, we get for the
sequence

0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0,

Let GF (8) be the field extension of GF (2) defined by the primitive poly-
nomial f(x) = x3 + x+ 1. Recall

traceGF (8)/GF (2)(a) = a+ Fr(a) + Fr2(a) = a+ a2 + a4,

for a ∈ GF (8). It can be shown that

ak = traceGF (8)/GF (2)(αξ
k),

where α = ξ + ξ2 and ξ is a root of f(x) = 0.

3 Error-correcting codes

Roughly speaking a code is a system for converting a message into another
form for the purpose of communicating the message more efficiently or reli-
ably. A few examples are listed below.

• Semaphore, where a message is converted into a sequence of flag move-
ments for communication across a distance.

• Morse code, where a message is converted into a sequence of dots and
dashes for communication using telegraph. For example, LEG is

· − · · · − −·

and RUN is

· − · · · − −·

(They share the same “bit” pattern in Morse code, as do EARN and
URN.)

• Marconi Telegraph Code, where a commonly used phrase is converted
into a more compact 5-letter sequence.

55

A code could be used as a cipher, but most codes are not created with se-
curity in mind. For example, during the Prohibition Era, rumrunners used
slightly modified telegraph codes to transmit shipment information and meet-
ing places for ship-loads of alchohol. Such ciphers were routinely broken by
Coast Guard cryptographers.

Some codes are designed for compression - to store digital data more com-
pactly. Some codes are designed for reliability - to communicate information
over a noisy channel, yet to correct the errors which arise.

3.1 The communication model

Consider a source sending messages through a noisy channel. The message
sent will be regarded as a vector of length n whose entries are taken from a
given finite field F (typically, F = GF (2)).

For simplicity, assume that the message being sent is a sequence of 0’s and
1’s. Assume that, due to noise, when a 0 is sent, the probability that a 1 is
(incorrectly) received is p and the probability that a 0 is (correctly) received
is 1− p. The error rate p is a small positive number (such as 1/10000) which
represents the “noisiness” of the channel. Assume also that the error rate
(and channel noise) is not dependent on the symbol sent: when a 1 is sent,
the probability that a 1 is (correctly) received is 1 − p and the probability
that a 0 is (incorrectly) received is p.

3.2 Basic definitions

It was long believed that the theory of error-correcting codes was originated
by Richard Hamming in the late 1940’s, a mathematician who worked for
Bell Telephone. However, recent work by mathematician and historian Chris
Christensen and others, it is now known that the theory was developed by
Lester Hill about 20 years earlier [CJT12]. Some specific examples of his
codes actually arose earlier in various isolated connections - for example,
statistical design theory and in soccer betting(!). Hamming’s motivation
was to program a computer to correct “bugs” which arose in punch-card
programs. The overall goal behind the theory of error-correcting codes is to
reliably enable digital communication.

Let F = GF (q) be any finite field.
A (linear error-correcting) code C of length n over F is a vector subspace

56

of Fn (provided with the standard basis7) and its elements are called code-
words. When F = GF (2) it is called a binary code. These are the most
important codes from the practical point of view. Think of the following
scenario: You are sending an n-vector of 0’s and 1’s (the codeword) across
a noisy channel to your friend. Your friend gets a corrupted version (the
received word differs from the codeword in a certain number of error posi-
tions). Depending on how the code C was constructed and the number of
errors made, it is possible that the original codeword can be recovered. This
raises the natural question: given C, how many errors can be corrected? Stay
tuned...

A code of length n and dimension k (as a vector space over F) is called
an [n, k]-code. In abstract terms, an [n, k]-code is given by a short exact
sequence8

0→ Fk G→ Fn H→ Fn−k → 0. (13)

We identify C with the image of G.

Example 73. The matrix G = (1, 1, 1) defines a map G : GF (2)→ GF (2)3.
The image is

C = Im(G) = {(0, 0, 0), (1, 1, 1)}.

The matrix

H =

(
1 0 1
0 1 1

)
defines a map H : GF (2)3 → GF (2)2. It is not hard to check G ·H = 0.

The function

G : Fk → C,

~m 7−→ ~mG,

7It is important that the code be provided with a fixed basis which never changes.
This is because the minimum distance function is not invariant under a change of basis.
However, the minimum distance is one quantity used to measure how “good” a code is,
from the practical point of view.

8“Short exact” is a compact way of specifying the following three conditions at once:
(1) the first map G is injective, i.e., G is a full-rank k × n matrix, (2) the second map H
is surjective, and (3) image(G) = kernel(H).

57

is called the encoder. Since the sequence (13) is exact, a vector ~v ∈ Fn is a
codeword if and only if H(~v) = 0. If Fn is given the usual standard vector
space basis then the matrix of G is a generating matrix of C and the matrix
of H is a check matrix of C. In other words,

C = {~c | ~c = ~mG, some ~m ∈ Fk}
= {~c ∈ Fn | H~c = ~0}.

When G has the block matrix form

G = (Ik | A),

where Ik denotes the k×k identity matrix and A is some k× (n−k) matrix,
then we say G is in standard form. By abuse of terminology, if this is the
case then we say C is in standard form (or in systemic form).

Lemma 74. Suppose C is a linear [n, k, d] code over GF (q) with generator
matrix G = (Ik, A), for some k × (n − k) matrix A. The matrix H =
(−AT , In−k) is a check matrix for C.

Proof. The rank of H is obviously n− k. Therefore, it suffices to prove that
the rows of G are all orthogonal to the rows of H, i.e., that HGT = 0. Note
the ith row of G is (~ei, ~Ai), where ~Mi denotes the ith row of a matrix M .

Likewise, the jth row of H is (− ~AT j, ~ej). We have

(~ei, ~Ai) ·(− ~AT j, ~ej) = ith coord of − ~AT j + jth coord of ~Ai = −Aij +Aij = 0,

for 1 ≤ i ≤ k, 1 ≤ j ≤ n− k. �

Example 75. The matrix

G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 1

 .

is a generating matrix for a code in standard form.

The matrix G has rank k, so the row-reduced echelon form of G, call it
G′, has no rows equal to the zero vector. In fact, the standard basis vectors
~e1, ..., ~ek of the column space Fk occur amongst k columns of those of G′.

58

The corresponding coordinates of C are called the information coordinates
(or information bits, if C is binary) of C.

Aside: For a “random” k × k matrix with real entries, the “probability” that its
rank is k is of course 1. This is because “generically” a square matrix with real entries is
invertible. In the case of finite fields, this is not the case. For example, the probability
that a “large random” k × k matrix with entries in GF (2) is invertible is

lim
k→∞

(2k − 1)(2k − 2)...(2k − 2k−1)

2k2 =

∞∏
i=1

(1− 2−i) = 0.288... .

The Hamming metric is the function

d : Fn × Fn → R,

d(~v, ~w) = |{i | vi 6= wi}| = d(~v − ~w,~0).

The Hamming weight of a vector is simply its distance from the origin:

wt (~v) = d(~v,~0).

Question: How many vectors belong to the “shell’ of radius r about the origin
~0 ∈ GF (q)r?

Answer:

(
n
r

)
(q − 1)r. Think about it! (Hint: “distance r” means that there

are exactly r non-zero coordinates. The binomial coefficient describes the number

of ways to choose these r coordinates.)

The minimum distance of C is defined to be the number

d(C) = min
~c 6=~0

d(~c,~0).

(It is not hard to see that this is equal to the closest distance between any
two distinct codewords in C.) An [n, k]-code with minimum distance d is
called an [n, k, d]-code.

Lemma 76. (Singleton bound) Every linear [n, k, d] code C satisfies

k + d ≤ n+ 1.

Note: this bound does not depend on the size of F. A code C whose
parameters satisfy k + d = n + 1 is called maximum distance separable or
MDS. Such codes, when they exist, are in some sense best possible.

59

proof: Fix a basis of Fnq and write all the codewords in this basis. Delete
the first d − 1 coordinates in each code word. Call this new code C ′. Since
C has minimum distance d, these codewords of C ′ are still distinct. There
are therefore qk of them. But there cannot be more than qn−d+1 = |Fn−d+1

q |
of them. This gives the inequality. �

The rate of the code is R = k/n - this measures how much information
the code can transmit. The relative minimum distance of the code is δ = d/n
- this is directly related to how many errors can be corrected.

Lemma 77. Let C ⊂ Fn be an [n, k, d]-code.

(a) If ~v ∈ Fn is arbitrary and 0 < r ≤ [d−1
2

] then the “ball” about ~v with
radius r,

Br(~v) = {~w ∈ Fn | d(~v, ~w) ≤ r}

contains at most one codeword in C.

(b) If ~v ∈ Fn is a received vector then the nearest neighbor algorithm (below)
returns a unique codeword ~c ∈ C closest to ~v.

Part (b) will be verified after the statement of nearest neighbor algorithm.
Part (a) follows easily from the fact that the Hamming metric is, in fact, a
metric. Here is a picture of the idea.

◦

•

•

◦

•

•

◦

•

•

•

•

•

•

•

•

•

•

•

•

•

•

◦

•

•

◦

•

•

◦

•

•

•

•

' $

& %
•

•

•

•

•

•

•

•

•

•

◦

•

•

◦

•

•

◦

Lemma 78. (sphere-packing bound) For any code C ⊂ Fn, we have

60

|C|
t∑
i=0

(
n
i

)
(q − 1)i ≤ qn,

where t = [(d− 1)/2].

proof: For each codeword of C, construct a ball of radius t about it.
These are non-intersecting, by definition of d and the previous lemma. Each
such ball has

t∑
i=0

(
n
i

)
(q − 1)i

elements. The result follows from the fact that ∪~c∈CBt(~c) ⊂ Fn and |Fn| = qn.
�

Suppose (a) you sent ~c ∈ C, (b) your friend received ~v ∈ Fn, (c) you
know (or are very confident) that the number t of errors made is less than or
equal to [d−1

2
]. By Lemma 78 above, the “ball” about ~v of radius t contains a

unique codeword. It must be ~c, so your friend can recover what you sent (by
searching though all the vectors in the ball and checking which one is in C)
even though she/he only knows C and ~v. This is called the nearest neighbor
decoding algorithm:

1. Input: A received vector ~v ∈ Fn.

Output: A codeword ~c ∈ C closest to ~v.

2. Enumerate the elements of the ball Bt(~v) about the received word. Set
~c =“fail”.

3. For each ~w ∈ Bt(~v), check if ~w ∈ C. If so, put ~c = ~w and break to the next
step; otherwise, discard ~w and move to the next element.

4. Return ~c.

Note “fail” is not returned unless t > [d−1
2

], by the above lemma.

Definition 79. We say that a linear C is t-error correcting if |Bt(~w)∩C| ≤ 1.

Note that t ≤ [d−1
2

] if and only if d ≥ 2t+ 1.
The general goal in the theory is to optimize the following properties:

61

• the rate, R = k/n,

• the relative minimum distance, δ = d/n,

• the speed at which a “good” encoder for the code can be implemented,

• the speed at which a “good” decoder for the code can be implemented.

There are (sometimes very technical) constraints on which these can be
achieved, as we have seen with the Singleton bound and the sphere-packing
bounds.

3.3 Binary hamming codes

This material can be found in many standard textbooks.
A Hamming code is a member of a family of binary error-correcting codes

defined by Richard Hamming, a Bell telephone mathematician, in the 1940s.

Definition 80. Let r > 1. The Hamming [n, k, 3]-code C is the linear code
with

n = 2r − 1, k = 2r − r − 1,

and parity check matrix H defined to be the matrix whose columns are all the
(distinct) non-zero vectors in GF (2)r. By Lemma 81, this code has minimum
distance d = 3.

Lemma 81. Every binary Hamming code C has minimum distance 3.

Proof. Indeed, if C has a code wode of weight 1 then the parity check matrix
H of C would have to have a column which consists of the zero vector,
contradicting the definition of H. Likewise, if C has a code wode of weight
2 then the parity check matrix H of C would have to have two identical
columns, contradicting the definition of H. Thus d ≥ 3.

Since 
1
0
0
...
0

 ,


0
1
0
...
0

 , and


1
1
0
...
0

 ,

form three columns of the parity check matrix H of C - say the 1st, 2nd, and
3rd columns - the vector (1, 1, 1, 0, ..., 0) must be a code word. Thus d ≤ 3.
�

62

Example 82. We consider only two cases of the binary Hamming code con-
struction.

(a) r = 2: The Hamming [3, 1]-code has parity check matrix

H =

(
1 0 1
0 1 1

)
The matrix G = (1, 1, 1) is a generating matrix.

(b) r = 3: The Hamming [7, 4]-code has parity check matrix

H =

 1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1


The matrix

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 1


is a generating matrix.

Example 83. Consider the Hamming [7, 4] code in Example 82(b) above.
The meaning of the statement that G is a generator matrix is that a vector

~x =



x1
x2
x3
x4
x5
x6
x7


is a codeword if and only if ~x is a linear combination of the rows of G. The
meaning of the statement that H is a check matrix is H~x = ~0, ie

x1 + x4 + x6 + x7 = 0, x2 + x4 + x5 + x7 = 0, x3 + x5 + x6 + x7 = 0.

This may be visualized via a Venn diagram (see Figure 1).
Decoding algorithm for the Hamming [7, 4]-code

Denote the received word by
~w = (w1, w2, w3, w4, w5, w6, w7).

63

&%
'$

&%
'$

&%
'$A B

C

7

41 2

3

56

Figure 1: Venn diagram for the Hamming [7, 4, 3] code

1. Put wi in region i of the Venn diagram above, i = 1, 2, ..., 7.

2. Do parity checks on each of the circles A, B, and C.

parity failure region(s) error position
none none

A, B, and C 7
B and C 5
A and C 6
A and B 4

A 1
B 2
C 3

Here is some Sage code to illustrate this:

Sagemath

sage: C = codes.HammingCode(3,GF(2)); C
Linear code of length 7, dimension 4 over Finite Field of size 2
sage: C.minimum_distance()
3
sage: H = matrix(GF(2), 3, 7, [[1, 0, 0, 1, 0, 1, 1], [0, 1, 0, 1, 1, 0, 1],

[0, 0, 1, 0, 1, 1, 1]])
sage: H
[1 0 0 1 0 1 1]
[0 1 0 1 1 0 1]
[0 0 1 0 1 1 1]
sage: C = codes.LinearCodeFromCheckMatrix(H)
sage: C.check_mat()
[1 0 0 1 0 1 1]
[0 1 0 1 1 0 1]
[0 0 1 0 1 1 1]
sage: C.minimum_distance()
3
sage: C.list()
[(0, 0, 0, 0, 0, 0, 0),
(1, 0, 0, 0, 1, 0, 1),
(0, 1, 0, 0, 0, 1, 1),
(1, 1, 0, 0, 1, 1, 0),
(0, 0, 1, 0, 1, 1, 1),
(1, 0, 1, 0, 0, 1, 0),
(0, 1, 1, 0, 1, 0, 0),
(1, 1, 1, 0, 0, 0, 1),
(0, 0, 0, 1, 1, 1, 0),

64

(1, 0, 0, 1, 0, 1, 1),
(0, 1, 0, 1, 1, 0, 1),
(1, 1, 0, 1, 0, 0, 0),
(0, 0, 1, 1, 0, 0, 1),
(1, 0, 1, 1, 1, 0, 0),
(0, 1, 1, 1, 0, 1, 0),
(1, 1, 1, 1, 1, 1, 1)]

3.4 Coset leaders and the covering radius

Let C ⊂ GF (q)n be a linear block code with generator matrix G and check
matrix H.
Question: What is the largest radius r such that the balls of radius r centered
about all the codewords,

B(c, r) = {v ∈ GF (q)n | d(c, v) ≤ r}

are disjoint?
Answer: [(d−1)/2]. By the above proof, we see that the triangle inequal-

ity will not allow two balls centered at neighboring codewords are disjoint if
and only if they have radius ≤ [(d− 1)/2].

The union of all these disjoint balls of radius [(d− 1)/2] centered at the
codewords in C usually does not equal the entire space V = GF (q)n. (When
it does, C is called perfect)

How much larger do we have to make the radius so that the union of these
balls does cover all of V ? In other words, we want to answer the following
question:
Question: What is the smallest radius ρ such that

∪c∈CB(c, ρ) = V ?

Answer: At the present time, there are no simple general formulas for ρ
and, in general, it is hard to even find good upper bounds on ρ. However,
there is a sharp lower bound:

ρ ≥ [(d− 1)/2].

This radius ρ is called the covering radius.
If you think about it for a moment, you’ll realize that the covering radius

is the maximum value of

65

dist(v, C) = min
c∈C

wt (v − c) = min
c∈C

wt (v + c),

over all v ∈ GF (q)n.
A coset is a subset of GF (q)n of the form C + v for some v ∈ GF (q)n.

Equivalently, a coset is a pre-image of some y in GF (q)n−k under the check
matrix H : GF (q)n → GF (q)n−k. Let S be a coset of C. A coset leader of S
is an element of S having smallest weight. The covering radius is, evidently,
the highest weight of all the coset leaders of C.

Theorem 84. The coset leaders of a Hamming code are those vectors of
wt ≤ 1.

Proof. Let the Hamming code be defined as a [n, k, d] code as above where
for some integer r, n = 2r − 1, k = 2r − 1− r, and d = r. In the binary case,
the size of the ambient space is qn = 2n = |GF (q)n| and the size of the code
is qk = 2k = |C|. Thus, the size of any coset S of C is

|S| = |GF (q)n|�|C| = 2n−k = 2r = n+ 1.

Claim: Each coset contains a coset leader of wt ≤ 1 and no coset contains
more than one vector of wt ≤ 1. Proof of claim: Assume that v1 +C is one
such coset with two distinct vectors w1, w2 of wt ≤ 1. Then,

w1 = v1 + c1, w2 = v1 + c2.

So,
w1 − w2 = c1 − c2 ∈ C.

And, since wt (w1 − w2) = 2 and d(C) = 3 for a Hamming code, we have a
contradiction. Also, by the Pigeonhole Principle, each coset contains exactly
one vector v satisfying wt (v) = 1. Thus, the claim holds, and this also
proves the theorem. �

Example 85. For the Hamming [7, 4, 3] code above, the cosets are

{{(0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 1, 0, 0, 0), (1, 1, 1, 0, 1, 0, 0), (1, 0, 1, 1, 1, 0, 0), (0, 0, 1, 0, 0, 1, 0), (0, 1, 1, 1, 0, 1, 0),

(1, 1, 0, 0, 1, 1, 0), (1, 0, 0, 1, 1, 1, 0), (1, 1, 1, 0, 0, 0, 1), (1, 0, 1, 1, 0, 0, 1), (0, 0, 0, 0, 1, 0, 1), (0, 1, 0, 1, 1, 0, 1),

(1, 1, 0, 0, 0, 1, 1), (1, 0, 0, 1, 0, 1, 1), (0, 0, 1, 0, 1, 1, 1), (0, 1, 1, 1, 1, 1, 1)},

66

{(1, 0, 0, 0, 0, 0, 0), (1, 1, 0, 1, 0, 0, 0), (0, 1, 1, 0, 1, 0, 0), (0, 0, 1, 1, 1, 0, 0), (1, 0, 1, 0, 0, 1, 0), (1, 1, 1, 1, 0, 1, 0),

(0, 1, 0, 0, 1, 1, 0), (0, 0, 0, 1, 1, 1, 0), (0, 1, 1, 0, 0, 0, 1), (0, 0, 1, 1, 0, 0, 1), (1, 0, 0, 0, 1, 0, 1), (1, 1, 0, 1, 1, 0, 1),

(0, 1, 0, 0, 0, 1, 1), (0, 0, 0, 1, 0, 1, 1), (1, 0, 1, 0, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1)},

{(0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0), (1, 0, 1, 0, 1, 0, 0), (1, 1, 1, 1, 1, 0, 0), (0, 1, 1, 0, 0, 1, 0), (0, 0, 1, 1, 0, 1, 0),

(1, 0, 0, 0, 1, 1, 0), (1, 1, 0, 1, 1, 1, 0), (1, 0, 1, 0, 0, 0, 1), (1, 1, 1, 1, 0, 0, 1), (0, 1, 0, 0, 1, 0, 1), (0, 0, 0, 1, 1, 0, 1),

(1, 0, 0, 0, 0, 1, 1), (1, 1, 0, 1, 0, 1, 1), (0, 1, 1, 0, 1, 1, 1), (0, 0, 1, 1, 1, 1, 1)},

{(1, 1, 0, 0, 0, 0, 0), (1, 0, 0, 1, 0, 0, 0), (0, 0, 1, 0, 1, 0, 0), (0, 1, 1, 1, 1, 0, 0), (1, 1, 1, 0, 0, 1, 0), (1, 0, 1, 1, 0, 1, 0),

(0, 0, 0, 0, 1, 1, 0), (0, 1, 0, 1, 1, 1, 0), (0, 0, 1, 0, 0, 0, 1), (0, 1, 1, 1, 0, 0, 1), (1, 1, 0, 0, 1, 0, 1), (1, 0, 0, 1, 1, 0, 1),

(0, 0, 0, 0, 0, 1, 1), (0, 1, 0, 1, 0, 1, 1), (1, 1, 1, 0, 1, 1, 1), (1, 0, 1, 1, 1, 1, 1)},

{(0, 0, 1, 0, 0, 0, 0), (0, 1, 1, 1, 0, 0, 0), (1, 1, 0, 0, 1, 0, 0), (1, 0, 0, 1, 1, 0, 0), (0, 0, 0, 0, 0, 1, 0), (0, 1, 0, 1, 0, 1, 0),

(1, 1, 1, 0, 1, 1, 0), (1, 0, 1, 1, 1, 1, 0), (1, 1, 0, 0, 0, 0, 1), (1, 0, 0, 1, 0, 0, 1), (0, 0, 1, 0, 1, 0, 1), (0, 1, 1, 1, 1, 0, 1),

(1, 1, 1, 0, 0, 1, 1), (1, 0, 1, 1, 0, 1, 1), (0, 0, 0, 0, 1, 1, 1), (0, 1, 0, 1, 1, 1, 1)},

{(1, 0, 1, 0, 0, 0, 0), (1, 1, 1, 1, 0, 0, 0), (0, 1, 0, 0, 1, 0, 0), (0, 0, 0, 1, 1, 0, 0), (1, 0, 0, 0, 0, 1, 0), (1, 1, 0, 1, 0, 1, 0),

(0, 1, 1, 0, 1, 1, 0), (0, 0, 1, 1, 1, 1, 0), (0, 1, 0, 0, 0, 0, 1), (0, 0, 0, 1, 0, 0, 1), (1, 0, 1, 0, 1, 0, 1), (1, 1, 1, 1, 1, 0, 1),

(0, 1, 1, 0, 0, 1, 1), (0, 0, 1, 1, 0, 1, 1), (1, 0, 0, 0, 1, 1, 1), (1, 1, 0, 1, 1, 1, 1)},

{(0, 1, 1, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0), (1, 0, 0, 0, 1, 0, 0), (1, 1, 0, 1, 1, 0, 0), (0, 1, 0, 0, 0, 1, 0), (0, 0, 0, 1, 0, 1, 0),

(1, 0, 1, 0, 1, 1, 0), (1, 1, 1, 1, 1, 1, 0), (1, 0, 0, 0, 0, 0, 1), (1, 1, 0, 1, 0, 0, 1), (0, 1, 1, 0, 1, 0, 1), (0, 0, 1, 1, 1, 0, 1),

(1, 0, 1, 0, 0, 1, 1), (1, 1, 1, 1, 0, 1, 1), (0, 1, 0, 0, 1, 1, 1), (0, 0, 0, 1, 1, 1, 1)},

{(1, 1, 1, 0, 0, 0, 0), (1, 0, 1, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0), (0, 1, 0, 1, 1, 0, 0), (1, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 1, 0),

(0, 0, 1, 0, 1, 1, 0), (0, 1, 1, 1, 1, 1, 0), (0, 0, 0, 0, 0, 0, 1), (0, 1, 0, 1, 0, 0, 1), (1, 1, 1, 0, 1, 0, 1), (1, 0, 1, 1, 1, 0, 1),

(0, 0, 1, 0, 0, 1, 1), (0, 1, 1, 1, 0, 1, 1), (1, 1, 0, 0, 1, 1, 1), (1, 0, 0, 1, 1, 1, 1)}}

The coset leaders are:

{(0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0), (1, 1, 0, 0, 0, 0, 0),

(0, 0, 1, 0, 0, 0, 0), (1, 0, 1, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0), (1, 1, 1, 0, 0, 0, 0)}

Note that the largest weight of these coset leaders is 1, as the theorem above
predicts.

Theorem 86. Hamming codes are perfect.

67

Proof. Since d(C) = 3 for Hamming codes, we desire to show that equality
holds in

ρ = [(d− 1)/2] = 1.

To attain a contradiction, assume

ρ = max
x∈GF (q)n

d(x,C) > 1;

then for some x ∈ GF (q)n, d(x,C) > 1. But by the previous theorem, the
coset x+C must contain a coset leader v satisfying wt (v) ≤ 1, a contradiction
to the assumption that d(x,C) > 1. Thus, ρ = 1. �

A final remark on coset leaders. These were introduced by David Slepian
in the 1950s. Slepian also developed the following general decoding algo-
rithm:

1. Input: A received vector ~v ∈ Fn.

Output: A codeword ~c ∈ C closest to ~v.

2. Compute the coset S = ~v + C of ~v, the received word. Compute the coset
leader of S, call it ~e.

Slepian’s way to do this:

• Precompute all the coset leaders ~u of C and tabulate all the values
(~u,H~u).

• Compute the syndrome of ~v: ~s = H~v. Search the 2nd coordinate of the
tabulated pairs (~u,H~u) for this syndrome. Select the 1st coordinate
from that pair, ~u.

• Let ~e = ~u.

3. Put ~c = ~v − ~e.

4. Return ~c.

3.5 Reed-Solomon codes as polynomial codes

Let F = GF (q), where q is a prime power. Let x1, . . . , xn ∈ F be distinct
elements of F (this forces n ≥ q) and let F [x]k denote the k-dimensional
vector space over F of all polynomials of degree less than k.

68

Formally, the vector space C ⊂ F n of codewords of the Reed-Solomon
code is defined as follows:

C = {(p(x1), . . . , p(xn)) | p ∈ F [x]k}.

Example 87. Let k = 2, n = 4, q = 5, with points xi ∈ {0, 1, 2, 3}. Then C
is a [4, 2, 3] code over GF (5), with generator matrix(

1 1 1 1
0 1 2 3

)
and check matrix (

1 0 2 2
0 1 3 1

)
.

The codewords of C are

(0, 0, 0, 0), (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3), (4, 4, 4, 4),

(0, 1, 2, 3), (1, 2, 3, 4), (2, 3, 4, 0), (3, 4, 0, 1), (4, 0, 1, 2),

(0, 2, 4, 1), (1, 3, 0, 2), (2, 4, 1, 3), (3, 0, 2, 4), (4, 1, 3, 0),

(0, 3, 1, 4), (1, 4, 2, 0), (2, 0, 3, 1), (3, 1, 4, 2), (4, 2, 0, 3),

(0, 4, 3, 2), (1, 0, 4, 3), (2, 1, 0, 4), (3, 2, 1, 0), (4, 3, 2, 1).

Since any two distinct polynomials of degree less than k agree in at most
k− 1 points9, this means that any two codewords of the Reed-Solomon code
disagree in at least n − (k − 1) = n − k + 1 coordinates. In particular,
the minimum distance d of C satisfies d ≥ n − k + 1. There are distinct
polynomials in F [x]k that do agree in k−1 points10, so the minimum distance
of the Reed-Solomon code is exactly n − k + 1. This proves the following
result.

Lemma 88. The Reed-Solomon code defined above (where n ≤ q) is an
[n, k, d]-code over GF (q).

9This follows, for example, from the Lagrange interpolation formula, Lemma 45.
10Again, by the Lagrange interpolation formula.

69

Example 89. Let F = GF (11) and consider the vector space F [x]2 of poly-
nomials of degree ≤ 1. Pick xi = i ∈ F , i = 1, 2, 3, 4. The associated
Reed-Solomon code is the vector space

C = {a0 + a1, a0 + 2a1, a0 + 3a1, a0 + 4a1) | ai ∈ F}

= Span{(1, 1, 1, 1), (1, 2, 3, 4)} ⊂ F 4.

Therefore C has generator matrix

G =

(
1 1 1 1
1 2 3 4

)
.

3.6 Cyclic codes as polynomial codes

In this section, we discuss a class of linear error-correcting block codes called
cyclic codes. We shall see that these may be regarded as ideals in the quotient
ring GF (q)[x]/(xn − 1).

Let

Rn = GF (q)[x]/(xn − 1) = {a0 + a1x+ . . .+ an−1x
n−1 | ai ∈ GF (q)},

and let

φ : GF (q)n → Rn

(a0, a1, . . . , an−1) 7→ a0 + a1x+ . . .+ an−1x
n−1

denote the correspondence between polynomials and their coefficients.

Lemma 90. The map φ is a one-to-one onto isomorphism of GF (q)-vector
spaces.

Proof. It is clearly one-to-one and onto. It remains to show it preserves the
GF (q)-vector space operations. If

~a = (a0, a1, . . . , an−1), ~b = (b0, b1, . . . , bn−1),

then

φ(~a+~b) = (a0 + b0) + (a1 + b1)x+ . . .+ (an−1 + bn−1)x
n−1

70

= (a0 + a1x+ . . .+ an−1x
n−1) + (b0 + b1x+ . . .+ bn−1x

n−1) = φ(~a) + φ(~b),

so it preserves vector addition. Similarly,

φ(c~a) = ca0 + ca1x+ . . .+ can−1x
n−1 = c(a0 + a1x+ . . .+ an−1x

n−1) = cφ(~a),

so it preserves scalar multiplication. �

Next, define

σ : GF (q)n → GF (q)n,

(a0, a1, . . . , an−1) 7→ (an−1, a0, . . . , an−2).

Note that σ preserves the GF (q)-vector space operations, i.e., is a linear
transformation. Indeed, in the standard basis it can be represented by a
permutation matrix11. This is the cyclic shift map.

Proposition 91. Via the correspondence φ between coefficient vectors and
the associated polynomial, the cyclic shift map on GF (q)n corresponds to the
multiplication by x map on Rn. In other words,

φ(σ(~a)) = xφ(~a),

for each ~a ∈ GF (q)n. Equivalently, the diagram

GF (q)n
σ−−−→ GF (q)n

φ

y φ

y
Rn

mult. by−−−−→
x

Rn

commutes.

Note, an ideal of Rn is simply a subset I ⊂ Rn which is closed under

• vector addition,

• scalar multiplication,

11A permutation matrix is a square matrix of 0s and 1s which has exactly one 1 in each
row and column.

71

• multiplication by arbitrary r(x) ∈ Rn.

This implies the following result.

Lemma 92. A subset I ⊂ Rn which is closed under

• vector addition,

• scalar multiplication,

• multiplication by x,

is an ideal of Rn.

The following result classifies all the cyclic codes.

Theorem 93. Let C ⊂ GF (q)n be a linear code. The following are equiva-
lent:

• C is a cyclic code.

• φ(C) is an ideal in Rn.

Proof. Assume C is a cyclic code.
We want to show that φ(C) is an ideal. By the lemma above, it sufficies

to show that φ(C) is closed under multiplication by x.
Pick ~c ∈ C arbitrarily. We must show xφ(~c) ∈ φ(C). By hypothesis,

σ(c) ∈ C. By the proposition above xφ(~a) = φ(σ(~c)) ∈ φ(C), as desired.
Conversely, assume φ(C) is an ideal in Rn. In particular, it is closed

under multiplication by x. Pick φ(~c) ∈ φ(C) arbitrarily. By the proposition
above φ(σ(~c)) = xφ(~a) ∈ φ(C). Since φ is one-to-one and onto, this implies
σ(~c) ∈ C. Since ~c ∈ C was arbitrary, C is cyclic. �

Lemma 94. Every ideal I in Rn is principal.

Proof. Let f(x) ∈ I be a non-zero element of smallest degree and note
(f(x)) ⊂ I. If there is a k(x) ∈ I − (f(x)) then the division algorithm
gives

k(x) = f(x)q(x) + r(x),

where deg(r(x)) < deg(f(x)). But then r(x) = k(x) − f(x)q(x) ∈ I is an
element of lower degree than f(x). This contradicts the fact that f(x) has
lowest degree. �

72

Suppose that C = (g(x)) = g(x)Rn is a cyclic code regarded as an ideal in
Rn. There is nothing previenting C = Rn, which would not be an interesting
code to study.

The condition g(x)|(xn − 1) guarantees that C 6= Rn. When is this true?

Lemma 95. Let g(x) be a polynomial with g(0) 6= 0 and without repeated
roots. There is an n > 1 such that g(x)|(xn − 1).

Proof. There is a d > 0 such that all the roots of g(x) = 0 are in GF (qd).
Since GF (qd)× is a cyclic group of order qd − 1, each root r of g(x) = 0
satisfies rq

d−1 = 1. Since g(x) has no repeated factors, g(x)|(xqd−1 − 1). �

Example 96. Let n = 7 and R7 = GF (2)[x]/(x7 − 1). Note x7 = 1 = (x +
1)(x3+x+1)(x3+x2+1). Let g(x) = x3+x+1 and let C = (g(x)) = g(x)R7.
As a set,

C = {0, 1+x+x3, x+x2+x4, x2+x3+x5, x3+x4+x6, 1+x4+x6, 1+x+x5, x+x2+x6, . . .}.

The corresponding code C ′ = φ−1(C) ⊂ GF (2)7 is, therefore, as a set

C ′ = {(0, 0, 0, 0, 0, 0, 0), (1, 1, 0, 1, 0, 0, 0), (0, 1, 1, 0, 1, 0, 0), (0, 0, 1, 1, 0, 1, 0),

(0, 0, 0, 1, 1, 0, 1), (1, 0, 0, 0, 1, 1, 0), (0, 1, 0, 0, 0, 1, 1),

In particular, (0, 0, 1, 0, 1, 1, 1) = (0, 0, 1, 1, 0, 1, 0) + (0, 0, 0, 1, 1, 0, 1) ∈ C ′,
since C and therefore C ′ is a vector space.

We claim:

C ′ = Span{(1, 0, 0, 0, 1, 1, 0), (0, 1, 0, 0, 0, 1, 1), (0, 0, 1, 0, 1, 1, 1), (0, 0, 0, 1, 1, 0, 1)}.

Suppose not. Since C ′ clearly contains the space, there must be a c =
(c1, . . . , c7) ∈ C ′ such that c is not in the span. But then

c′ = c−c1(1, 0, 0, 0, 1, 1, 0)−c2(0, 1, 0, 0, 0, 1, 1)−c3(0, 0, 1, 0, 1, 1, 1)−c4(0, 0, 0, 1, 1, 0, 1)

belongs to C ′ but not the span. This means that C contains a non-zero
polynomial of the form a1x

4 + a2x
5 + a3x

6 = x4(a1 + a2x+ a3x
2), which must

be a multiple of g(x) = 1 + x + x3. Clearly, this is impossible, which proves
the claim.

Because of the claim, we know

73

G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1


is a generator matrix for C ′.

In general, a binary linear [n, k, d] code with a generator matrix in the
form G = (Ik A) is said to be systemic and the generator matrix is said to
be in standard form.

One can verify directly that

H =

 1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1


is a check matrix for C ′, that is

C ′ = ker(H).

Indeed, HGT = 0 (the 3× 4 zero matrix).
Correspondingly, it can be verified that

C = {f ∈ Rn | f(x)h(x) = 0},

where h(x) = x4 + x2 + x + 1. This polynomial h(x) is called the check
polynomial of the code.

More generally, we have the following result.

Theorem 97. Let xn − 1 = g(x)h(x), for some

g(x) = g0 + g1x+ . . .+ gn−kx
n−k, gn−k 6= 0,

and

h(x) = h0 + h1x+ . . .+ hkx
k, hk 6= 0.

Define C = (g(x)) = g(x)Rn ⊂ Rn. The preimage C = φ−1(C ′) ⊂ GF (2)n is
a cyclic code of length n and dimension k, with generator matrix

74

G =


g0 g1 g2 . . . gn−k 0 . . . 0
0 g0 g1 g2 . . . gn−k . . . 0
...

...
0 . . . 0 g0 g1 g2 . . . gn−k


and check matrix

H =


hk hk−1 . . . h1 h0 0 . . . 0
0 hk hk−1 . . . h1 h0 . . . 0
...

...
0 . . . 0 hk hk−1 . . . h1 h0

 .

The polynomial g(x) is called a generator polynomial of C and h(x) the
corresponding check polynomial.

Example 98. We return to the example with n = 7, g(x) = x3 + x + 1,
h(x) = x4 + x2 + x+ 1, R7 = GF (2)[x]/(x7 − 1), and C = (g(x)) = g(x)R7.
In this case,

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


and check matrix

H =

 1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

Note that

HGT =

 0 0 0 0
0 0 0 0
0 0 0 0

 .

The codewords are

(0, 0, 0, 0, 0, 0, 0), (1, 1, 0, 1, 0, 0, 0), (0, 1, 1, 0, 1, 0, 0), (1, 0, 1, 1, 1, 0, 0),

(0, 0, 1, 1, 0, 1, 0), (1, 1, 1, 0, 0, 1, 0), (0, 1, 0, 1, 1, 1, 0), (1, 0, 0, 0, 1, 1, 0),

(0, 0, 0, 1, 1, 0, 1), (1, 1, 0, 0, 1, 0, 1), (0, 1, 1, 1, 0, 0, 1), (1, 0, 1, 0, 0, 0, 1),

(0, 0, 1, 0, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1), (0, 1, 0, 0, 0, 1, 1), (1, 0, 0, 1, 0, 1, 1).

75

Example 99. The [23, 12, 7] Golay code. This code is named in honor of
Marcel J. E. Golay whose 1949 paper introduced it for the first time.

Over GF (2), we have

x23−1 = (x+1)(x11+x9+x7+x6+x5+x+1)(x11+x10+x6+x5+x4+x2+1).

Let g(x) = x11 +x10 +x6 +x5 +x4 +x2 +1 and C = (g(x)) ⊂ R23
∼= GF (2)23.

This is the [23, 12, 7] Golay code.
This code has generator matrix

G =



1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1


and check matrix

H =



1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1
0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1
0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1


.

By Lemma 74, the generator matrix in standard form associated to H is

76

G′ =



1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1



.

3.6.1 Reed-Solomon codes as cyclic codes

Reed-Solomon codes were defined above as “evaluation codes”, i.e., as the
image C = evalP (F [x]k) under the evaluation map

evalP : F [x]k → F n,

where P = (p0, p1, . . . , pn−1) is a list of distinct points in F = GF (q) and

evalP (f(x)) = (f(p0), f(p1), . . . , f(pn−1)).

We proved in §3.5 that this is a linear [n, k]-code over F .
In some special cases, this is a cyclic code. We shall discuss this situation

in this section.

Lemma 100. Assume q ≡ 1 (mod n) and let α ∈ F be a primitive nth
root of unity. If p0, p1, . . . , pn−1 are given by pi = αi then C is a cyclic code.

In this case, note that the map

F [x]k → F [x]k

defined by f(x) 7→ f(αx), induces the cyclic shift map on codewords, so C
is cyclic.

77

Since C is a cyclic code, there is a generating polynomial g(x) ∈ F [x]
of degree n − k which divides xn − 1 such that, for any codeword ~c =
(c0, . . . , cn−1) of the Reed-Solomon code, the associated polynomial

c(x) = c0 + c1x+ c2x
2 + . . .+ cn−1x

n−1.

is a multiple of g(x). Let r1, r2, . . . , rn−k denote the roots of g(x) = 0.

Decoding algorithm: Write the received word ~f as a polynomial: Let f(x) =
c(x)+e(x), where e(x) is the error polynomial. We compute the “syndrome”
values

(ri, f(ri)) = (ri, c(ri) + e(ri)) = (ri, e(ri)), 1 ≤ i ≤ n− k.

If the number of errors is ≤ n − k and if the errors occur in the first n − k
coordinates of ~f then we may use Lagrange interpolation to recover e(x), and
hence solve for c(x).

3.6.2 Quadratic residue codes

Let ` > 2 be a prime and let Q = Q` be its set of quadratic residues,

Q = {k | 0 < k < `, x2 ≡ k (mod `) is solvable for x}.

Similarly, let N = N` = GF (`)×−Q denote the set of quadratic non-residues,
Assume from now on that12 2 ∈ Q.

Lemma 101. The subgroup Q of GF (`)× has order (`− 1)/2.

Proof. Consider the map s : GF (`)× → Q given by s(x) = x2. This map
is onto (by definition of Q). It is either 1-1 or it’s not. It it were 1-1 then
±1 ∈ GF (`) both go to 1, which implies ` = 2. But that contradicts the
hypothesis that ` > 2. Therefore, s is not 1-1. This means that |Q| < `− 1,
so there is some n ∈ N ⊂ GF (`)×.

We claim that the map

mn : GF (`)× → GF (`)×

x 7→ nx

12It is known that this is equivalent to assuming that p ≡ 1 (mod 8) or p ≡ −1
(mod 8).

78

is 1-1 and onto and satisfies mn(Q) = N . This simply renders into math-
ematical notation that fact that if you multiply a square by a non-square,
you get a non-square. Therefore, |Q| = |N | and we have `− 1 = |GF (`)×| =
|q ∪N | = |Q|+ |N | = 2|Q|. The lemma follows. �

If S ⊂ GF (`)×, define

rS(x) =
∑
j∈S

xj,

as a polynomial in GF (2)[x].

Lemma 102. If 2S = {2x | x ∈ S} then

rS(x)2 = r2S(x).

In particular, r2Q = rQ if and only if 2 ∈ Q and 2 ∈ N if and only if r2Q = rN .

For any ring R, an element r ∈ R with r 6= 0, 1 is called an idempotent
if r2 = r. The above lemma shows that rQ(x) is an idempotent of R` when
2 ∈ Q.

Proof. This lemma follows from the fact that (a+ b)2 = a2 + b2 over GF (2),
and the fact that Q is a subgroup of GF (`)×. �

If S = Q, define gQ(x) = c+ rQ(x), where we choose c so that gQ(1) = 1.
The ideal C = (gQ(x)) ⊂ R` = GF (2)[x]/(x` − 1) generated by gQ(x) is the
quadratic residue code associated to p. The code C is a [n, k, d] code where
n = `, k = (` + 1)/2, and d is known to satisfy d >

√
` (this is the square

root bound for quadratic residue codes).
Alternatively, let α ∈ GF (2m) be a primitive `th root of unity, where m

denotes the order of 2 (mod `) (i.e., the smallest m > 0 such that 2m ≡ 1
(mod `)). Let

Gα(x) =
∏
k∈Q

(x− αk),

where Q is the set of (`− 1)/2 quadratic residues in GF (`). The cyclic code
Cα = (Gα(x)) ⊂ R` has dimension

k = `− deg(Gα) = `− |Q| = `+ 1

2
.

79

Ultimately, we want to show that

(gQ(x)) = (Gα(x)),

i.e., that these codes are the same.

Example 103. Let ` = 17 and note 62 ≡ 2 (mod 17), so 2 is a quadratic
residue (mod 17), 2 ∈ Q17. Indeed,

Q17 = {1, 2, 4, 8, 9, 13, 15, 16},

so

gQ(x) = 1+x+x2+x4+x8+x9+x13+x15+x16 = (x4+x3+1)2(x8+x7+x6+x4+x2+x+1).

Since x4 + x3 + 1 is invertible in the ring R17, we have (gQ(x)) = (x8 + x7 +
x6 + x4 + x2 + x+ 1). Let

g(x) = x8 + x7 + x6 + x4 + x2 + x+ 1.

The Sagemath code below checks that g(x) =
∏

k∈Q(x − αk), where we pick

α = a15 = a5+a2+a, where a ∈ GF (28) is a primitive element, i.e., any fixed
root of x8 +x4 +x3 +x2 + 1 = 0. The element α′ = a7·15 = a105 = a4 + a3 + a
also could have been used, but that would yield∏

k∈Q

(x− (α′)k) = x8 + x5 + x4 + x3 + 1,

which generates a different code.

Sagemath

sage: F = GF(2)
sage: multiplicative_order(mod(2,17))
8
sage: F8.<a> = GF(2ˆ8,"a")
sage: R.<x> = PolynomialRing(F, "x")
sage: R8.<xx> = PolynomialRing(F8, "xx")
sage: quadratic_residues(17)
[0, 1, 2, 4, 8, 9, 13, 15, 16]
sage: (2ˆ8-1)/17
15
sage: alpha = aˆ15; alpha
aˆ5 + aˆ2 + a
sage: G_alpha = prod([xx-alphaˆk for k in Q]); G_alpha
xxˆ8 + xxˆ7 + xxˆ6 + xxˆ4 + xxˆ2 + xx + 1

80

sage: H_alpha = prod([xx-alphaˆk for k in N])
sage: G_alpha*H_alpha*(xx-1)
xxˆ17 + 1
sage: g_Q = 1+sum([xxˆk for k in Q]); g_Q
xxˆ16 + xxˆ15 + xxˆ13 + xxˆ9 + xxˆ8 + xxˆ4 + xxˆ2 + xx + 1
sage: g_Q.roots()
[(aˆ5 + aˆ2, 1),
(aˆ5 + aˆ2 + a, 1),
(aˆ5 + aˆ3 + aˆ2, 1),
(aˆ5 + aˆ4 + aˆ3 + a + 1, 1),
(aˆ6 + aˆ5, 1),
(aˆ6 + aˆ5 + aˆ2, 1),
(aˆ7 + aˆ5 + aˆ3 + 1, 1),
(aˆ7 + aˆ5 + aˆ4 + aˆ3 + 1, 1),
(aˆ3 + a + 1, 2),
(aˆ6 + aˆ2 + 1, 2),
(aˆ7 + aˆ4 + a + 1, 2),
(aˆ7 + aˆ6 + aˆ4 + aˆ3 + aˆ2, 2)]
sage: G_alpha.roots()
[(aˆ5 + aˆ2, 1),
(aˆ5 + aˆ2 + a, 1),
(aˆ5 + aˆ3 + aˆ2, 1),
(aˆ5 + aˆ4 + aˆ3 + a + 1, 1),
(aˆ6 + aˆ5, 1),
(aˆ6 + aˆ5 + aˆ2, 1),
(aˆ7 + aˆ5 + aˆ3 + 1, 1),
(aˆ7 + aˆ5 + aˆ4 + aˆ3 + 1, 1)]
sage: factor(g_Q)
(xx + aˆ5 + aˆ2) * (xx + aˆ5 + aˆ2 + a) * (xx + aˆ5 + aˆ3 + aˆ2) *
(xx + aˆ5 + aˆ4 + aˆ3 + a + 1) * (xx + aˆ6 + aˆ5) * (xx + aˆ6 + aˆ5 + aˆ2) *
(xx + aˆ7 + aˆ5 + aˆ3 + 1) * (xx + aˆ7 + aˆ5 + aˆ4 + aˆ3 + 1) *
(xx + aˆ3 + a + 1)ˆ2 * (xx + aˆ6 + aˆ2 + 1)ˆ2 *
(xx + aˆ7 + aˆ4 + a + 1)ˆ2 * (xx + aˆ7 + aˆ6 + aˆ4 + aˆ3 + aˆ2)ˆ2

The last few commands tell us that Gα(x) and gQ(x) have the same roots.
This is actually true more generally, as explained by the next result.

Theorem 104. Let g(x) be a polynomial of degree n−k which divides xn−1.
Let α ∈ GF (2m) be a primitive nth root of unity, where m denotes the order
of 2 (mod n).

(1) The cyclic code C = (g(x)) in Rn = GF (2)[x]/(xn − 1) contains a
unique idempotent E(x) such that C = (E(x)). Moreover, E(x) =
p(x)g(x), for some polynomial p(x), and

E(αi) = 0 if and only if g(αi) = 0, i > 0.

(2) c(x) ∈ C if and only of c(x)E(x) = c(x).

81

Proof. For the proof of (1), write xn − 1 = g(x)h(x), for some h(x). Since
the roots of xn − 1 are all distinct, gcd(g(x), h(x)) = 1. By the extended
Euclidean algorithm (the polynomial form of Bezout’s Lemma), there are
polynomials p(x), q(x) ∈ GF (2)[x] such that

p(x)g(x) + q(x)h(x) = 1. (14)

Let E(x) = p(x)g(x). Regarded as an element of Rn, g(x)h(x) = 0, so we
have

E(x)2 = p(x)g(x) · p(x)g(x) = p(x)g(x)(p(x)g(x) + 0)

= p(x)g(x)(p(x)g(x) + q(x)h(x)) = p(x)g(x) = E(x),

using (14). Therefore, E(x) is an idempotent. By (14), we have gcd(p(x), h(x)) =
1. Therefore, any root αi of g(x) must also be a root of p(x). This implies
E(αi) = 0 if and only if g(αi) = 0.

Next, we claim C = (g(x)) = (E(x)). One direction is clear: since
E(x) = p(x)g(x) is a multiple of g(x), we have (E(x)) ⊂ (g(x)). In the other
direction, multiply both sides of (14) by g(x), as an equation in Rn:

g(x) = p(x)g(x)2 + q(x)h(x)g(x) = p(x)g(x)2 = E(x)g(x).

Therefore, g(x) is a multiple of E(x), so (g(x)) ⊂ (E(x)). This establishes
the claim.

Moving onto (2), suppose c(x) = c(x)E(x). Then c(x) ∈ (E(x)) = C.
Conversely, if c(x) ∈ C then c(x) = f(x)E(x), so c(x)E(x) = f(x)E(x)2 =
f(x)E(x) = c(x). This proves (2).

It remains, in the proof of (1), to show that the generating idempotent
is unique. Suppose E1(x) and E2(x) are idempotent generating C. Taking
c(x) = E1(x) and E2(x) to be the generating idempotent in (2), we have
E1(x) = E1(x)E2(x). Taking c(x) = E2(x) and E1(x) to be the generat-
ing idempotent in (2), we have E2(x) = E2(x)E1(x). Together, these give
E1(x) = E2(x). �

Assume ` has been selected so that 2 ∈ Q. Next, we show that the unique
idempotent which generates C = (Gα(x)) is (gQ(x)).

Proposition 105. There is a primitive `th root of unity β ∈ GF (2m) such
that, for all s ∈ Q, gQ(βs) = 0.

82

Proof. Since gQ(x) is an idempotent (this is a consequence of the proof of
Lemma 102), gQ(αi) = gQ(αi)2. Therefore, gQ(αi) is invariant under the
Frobenius map Frob ∈ Gal(GF (2m)/GF (2)). This implies, for every i, we
have gQ(αi) ∈ GF (2). For any r ∈ Q, we have

gQ(αr) = c+
∑
k∈Q

(αr)k = c+
∑
k∈Q

αrk = c+
∑
s∈Q

αs = c+ rQ(α) = gQ(α)

and, for any r ∈ N , we have

gQ(αn) = c+
∑
k∈Q

(αn)k = c+
∑
k∈Q

αnk = c+
∑
s∈N

αs = c+ rN(α).

Moreover, since

1 + rQ(x) + rN(x) = 1 + x+ x2 + . . .+ x`−1 =
x` − 1

x− 1
,

we have rQ(αi) = 1 holds if and only if rN(αi) = 0. Therefore, rQ(αr) = 1
holds, for all r ∈ Q, if and only if, for any n ∈ N , rQ(αnr) = 0, for all r ∈ Q
(since rQ(αnr) = rN(αr)).

Therefore, for every r ∈ Q, gQ(αr) = 0 or, for every r ∈ Q, gQ(αr) = 1.
If for every r ∈ Q, gQ(αr) = 0 holds, then we are done (take β = α and
s = r). If for every r ∈ Q, gQ(αr) = 1 holds, then then by replacing α by αn

for some n ∈ N , we have, for every r ∈ Q, gQ((αn)r) = 0 holds. We are done
in this case as well, taking β = αn and s = r. �

Example 106. Let’s go through the proof of this proposition using some
examples.

If ` = 17 then m = 8 is the multiplicative order of 2 (mod `). Define
GF (28) = GF (2)/(x8 + x4 + x3 + x2 + 1). If a ∈ GF (28) is a (primitive)
root of x8 + x4 + x3 + x2 + 1 = 0 then a has order 28− 1 = 255. We need an
element α of order 17. Since 255 = 15 · 17, the element α = a15 has order
17.

Since Q = {1, 2, 4, 8, 9, 13, 15, 16} has an even number of elements,

gQ(x) = 1 + rQ(x) = 1 + x+ x2 + x4 + x8 + x9 + x13 + x15 + x16.

Note, as an element of R17, we have

gQ(x)2 = x32 + x30 + x26 + x18 + x16 + x8 + x4 + x2 + 1 =

83

x15 + x13 + x9 + x+ x16 + x8 + x4 + x2 + 1 = gQ(x).

Let N = {3, 5, 6, 7, 10, 11, 12, 14} denote the non-residues and write

rN(x) = x3 + x5 + x6 + x7 + x10 + x11 + x12 + x14.

Note, as an element of R17, we have

rN(x)2 = x28 + x24 + x22 + x20 + x14 + x12 + x10 + x6

= x11 + x7 + x5 + x3 + x14 + x12 + x10 + x6 = rN(x).

Note

1 + rQ(x) + rN(x) = 1 + x+ x2 + x4 + x8 + x9 + x13 + x15 + x16+

x3 + x5 + x6 + x7 + x10 + x11 + x12 + x14 = 1 + x+ . . .+ x16.

We have13

gQ(x) = (x−α15)(x−α)(x−α16)(x−α8)(x−α2)(x−α13)(x−α9)(x−α4)·

·(x− a238)2(x− a221)2(x− a119)2(x− a187)2 = Gα(x)(x8 + x6 + 1).

The proof of the proposition above tells us that either (1) for every r ∈ Q,
gQ(αr) = 0 or, (2) for every r ∈ Q, gQ(αr) = 1. Clearly, in this case, it is
case (1) that holds.

Sagemath

sage: F = GF(2)
sage: m = multiplicative_order(mod(2,17)); m
8
sage: F8.<a> = GF(2ˆm,"a")
sage: F8.polynomial()
aˆ8 + aˆ4 + aˆ3 + aˆ2 + 1
sage: R.<x> = PolynomialRing(F, "x")
sage: R8.<xx> = PolynomialRing(F8, "xx")
sage: alpha = aˆ15
sage: alphaˆ17
1
sage: Q = [x for x in quadratic_residues(17) if x<>0]; Q
[1, 2, 4, 8, 9, 13, 15, 16]
sage: N = [x for x in GF(17) if x<>0 and not(x in Q)]; N
[3, 5, 6, 7, 10, 11, 12, 14]
sage: g_Q = 1+sum([xxˆk for k in Q]); g_Q
xxˆ16 + xxˆ15 + xxˆ13 + xxˆ9 + xxˆ8 + xxˆ4 + xxˆ2 + xx + 1

13Note that the product contains αs and as.

84

sage: g_Q(1)
1
sage: [g_Q(alphaˆk) for k in Q]
[0, 0, 0, 0, 0, 0, 0, 0]
sage: [g_Q(alphaˆk) for k in N]
[1, 1, 1, 1, 1, 1, 1, 1]

Next, take ` = 23. In this case, m = 11 is the multiplicative order of
2 (mod `). Define GF (211) = GF (2)/(x11 + x2 + 1). If a ∈ GF (211) is a
(primitive) root of x11 +x2 + 1 = 0 then a has order 211− 1 = 2047 = 23 · 89.
We need an element α of order 23, so we take α = a89.

The quadratic residues mod 23 are

Q = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}

and the non-residues are

N = {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22}.

We have

gQ(x) = rQ(x) = x18 + x16 + x13 + x12 + x9 + x8 + x6 + x4 + x3 + x2 + x

= x(x3 + x+ 1)2(x11 + x9 + x7 + x6 + x5 + x+ 1)

= x(x3 + x+ 1)2
∏
k∈Q

(x− αk).

Since

x23−1 = (x+1)(x11+x9+x7+x6+x5+x+1)(x11+x10+x6+x5+x4+x2+1),

it follows that x(x3 + x+ 1)2 is a unit in R23. Therefore,

(gQ(x)) = (x11 + x9 + x7 + x6 + x5 + x+ 1) = (
∏
k∈Q

(x− αk)).

Sagemath

sage: Q = [x for x in quadratic_residues(23) if x<>0]; Q
[1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18]
sage: N = [x for x in GF(23) if x<>0 and not(x in Q)]; N
[5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22]
sage: m = multiplicative_order(mod(2,23)); m

85

11
sage: F11.<a> = GF(2ˆ11,"a")
sage: factor(2ˆ11-1)
23 * 89
sage: alpha = aˆ(89)
sage: alphaˆ23
1
sage: g_Q = 1+sum([xxˆk for k in Q]); g_Q
xxˆ18 + xxˆ16 + xxˆ13 + xxˆ12 + xxˆ9 + xxˆ8 + xxˆ6 + xxˆ4 + xxˆ3 + xxˆ2 + xx + 1
sage: g_Q(1)
0
sage: g_Q = sum([xxˆk for k in Q]); g_Q
xxˆ18 + xxˆ16 + xxˆ13 + xxˆ12 + xxˆ9 + xxˆ8 + xxˆ6 + xxˆ4 + xxˆ3 + xxˆ2 + xx
sage: g_Q(1)
1

Corollary 107. There is a primitive `th root of unity β ∈ GF (2m) such that
(gQ(x)) = (Gβ(x)).

Define Hβ(x) ∈ GF (2)[x] by Gβ(x)Hβ(x) = x` − 1, where β is as in the
previous proposition.

Proof. We know that gQ(x) and Gβ(x) have the same set of roots of the form
x = αi. This implies gQ(x) is a multiple of Gβ(x), so (gQ(x)) ⊂ (Gβ(x)).
This also implies that gQ(x) is relatively prime to Hβ(x). Therefore, by
the extended Euclidean algorithms, a(x)gQ(x) + b(x)Hβ(x) = 1, for some
a(x), b(x) ∈ GF (2)[x]. Multiply both sides by Gβ(x) to get

Gβ(x) = Gβ(x)a(x)gQ(x) +Gβ(x)b(x)Hβ(x) = Gβ(x)a(x)gQ(x),

in R`. This implies Gβ(x) is a multiple of gQ(x), so (gQ(x)) ⊂ (Gβ(x)). �

Example 108. Let C be the same code as in Example 103. This time, we
try to decode a received word.

The code C = (g(x)) ⊂ R17, regarded as a subspace of GF (2)17 has
generator matrix

1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0
0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1


86

and check matrix in standard form

H =



1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1
0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1
0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0
0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1
0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1
0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1


.

The generator matrix in standard form associated to H is

G′ =



1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0
0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0
1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0
1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1


.

While the first of these generator matrices has rows of weight at least 7, the
second has some rows of weight 5. Indeed, it is known that this code has
minimum distance 5. Therefore, it is capable to correcting 2 errors.

Suppose that the received vector is ~v = (0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0),
and suppose you know one error was made. Can you decode it?

3.6.3 BCH bound for cyclic codes

From Lemma 77, we know that the minimum distance d if a linear code deter-
mines how many errors can be corrected. In other words, it is a measurement
of how “good” a code is.

In this section, we establish a lower bound on cyclic codes. For certain
(“designed”) cyclic codes, this bound can be close to the actual minimum
distance. Fist, we need a fact about Vandermonde matrices.

A Vandermonde matrix is a square matrix each of whose column is a
geometric series:

87

V (a1, . . . , an) =


1 1 . . . 1
a1 a2 . . . an
a21 a22 . . . a2n
...

...
an−11 an−12 . . . an−1n

 ,

for any a1, . . . , an in a field (e.g., our finite GF (q)).

Lemma 109. detV (a1, . . . , an) =
∏

i<j≤n(aj − ai).

Proof. We prove this by induction.
When n = 2, we have

detV (a1, a2) = det

(
1 1
a1 a2

)
= a2 − a1.

Suppose n > 2. Let

A(x) = det


1 1 . . . 1
a1 a2 . . . x
a21 a22 . . . x2

...
...

an−11 an−12 . . . xn−1

 ,

which is a polynomial of degree n− 1. Since a matrix with identical columns
is singular, we know A(x) has roots at x = a1, . . . , an−1. Therefore, there is
a constant c 6= 0 suvh that

A(x) = c ·
n−1∏
i=1

(x− ai).

What is c? We can compute it by plugging in x− 0. On one hand,

A(0) = (−1)n−1ca1 . . . an−1.

On the other hand,

88

A(0) = det


1 1 . . . 1
a1 a2 . . . 0
a21 a22 . . . 0
...

...
an−11 an−12 . . . 0

 = (−1)n−1 det


1 1 . . . 1
a1 a2 . . . an−1
a21 a22 . . . a2n−1
...

...
an−11 an−12 . . . an−1n−1

 .

By the induction hypothesis, this is

= (−1)n−1
∏

i<j≤n−1

(aj − ai).

These imply

c =
∏

i<j≤n−1

(aj − ai).

Plugging in this value of c into A(x) and taking x = an gives the formula in
the statement of the lemma. �

Theorem 110. Let C = (g(x)) ⊂ Rn be a cyclic code of length n with
generating polynomial

g(x) = g0 + g1x+ . . .+ gn−kx
n−k, g0 6= 0, gn−k 6= 0.

If there is an α ∈ GF (qn−k) such that

g(αr) = . . . = g(αr+s) = 0,

then C is an [n, k, d] code with d ≥ s+ 2.

Proof. Let c(x) ∈ C be a non-zero codeword,

c(x) = c0 + c1x+ . . .+ cn−1x
n−1.

By hypothesis c(x) is a multiple of g(x) and

c(αr) = . . . = c(αr+s) = 0.

Suppose that c(x) has weight t, so there are coefficients cij 6= 0 such that

89

c(x) = ci1x
i1 + ci1x

i2 + . . .+ citx
it ,

and
c(αr) = ci1(α

r)ii + . . .+ cit(α
r)it = 0,

c(αr+1) = ci1(α
r+1)ii + . . .+ cit(α

r+1)it = 0,

...

c(αr+s) = ci1(α
r+s)ii + . . .+ cit(α

r+s)it = 0.

This can be written as a matrix equation A~v = ~0, where ~v = (ci1 , . . . , cit)
and

A =


αrii αri2 . . . αrit

α(r+1)ii α(r+1)i2 . . . α(r+1)it

α(r+2)ii α(r+2)i2 . . . α(r+2)it

...
...

α(r+s)ii aα(r+s)i2 . . . α(r+s)it

 = αriiαri2 · · ·αrit


1 1 . . . 1
αii αi2 . . . αit

α2ii α2i2 . . . α2it

...
...

αsii aαsi2 . . . αsit

 .

Suppose t ≤ s + 1. By the lemma on Vandermonde matrices above, the
submatrix M obtained by taking the first t rows of A has non-zero deter-
minant. Moreover, M~v = ~0. Therefore the rank of A is at least t. Since
t ≤ s + 1, the rank is at most t, so rank(M) = t. This implies M is 1-1, so
~v = ~0, and therefore c(x) = 0. This is a contradiction. �

Example 111. We return to the example with n = 7, g(x) = x3 + x + 1,
R7 = GF (2)[x]/(x7 − 1), and C = (g(x)) = g(x)R7. There is an α ∈ GF (8)
for which

g(x) = (x− α)(x− α2)(x− α4),

so the hypotheses to the above theorem holds with s = 1. The BCH bound
in the theorem above implies that d ≥ 3. Indeed, C is known to be a [7, 4, 3]
code, so the BCH bound is sharp in this case.

Example 112. Let g(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1 ∈ GF (2)[x]
and C = (g(x)) ⊂ R23

∼= GF (2)23 be the [n, 12, 7] Golay code. where n = 23,
k = 12, d = 7.

We have

g(x) = (x−α)(x−α2)(x−α3)(x−α4)(x−α5)(x−α8)(x−α12)(x−α13)(x−α16)(x−α18),

so the BCH bound implies that d ≥ 5.

90

3.6.4 Decoding cyclic codes

We explain the method of decoding known as error trapping. For simplicity,
we restrict to the case of binary cyclic codes.

Let C be a cyclic [n, k, d] code over GF (2), C ⊂ GF (2)n. Let G be a
k × n generator matrix and H be a (n− k)× n check matrix.

To implement the error-trapping algorithm, we must assume that we know
the k information bits of the code C. In other words, if ~m ∈ GF (2)k is the
sender’s original message, then the codeword sent is ~c = ~mG. We assume
that all the coordinates of ~m occur in the coordinates of ~c. The example
below illustrates this.

Example 113. Let C ⊂ GF (2)7 be the cyclic code associated to the generator
polynomial g(x) = x3 + x+ 1. By Theorem 97, we may take

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


However, we use instead

G′ =


1 0 1 1 1 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


which has coordinates 1, 2, 6, 7 as the information bits. Indeed, the cordewords
are of the form

~c = ~mG′ =


1 0 1 1 1 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


= (m1,m2,m1 +m2 +m3,m1 +m3 +m4,m1 +m2 +m4,m3,m4)

and we can recover ~m from c1, c2, c6, c7.

The set-up: suppose ~c = (c1, . . . , cn) is the codeword sent and an error
vector ~e = (e1, . . . , en) occurs with weight t, so the received vector has the

91

form ~v = ~c + ~e = (v1, . . . , vn), where dist(~v,~c) = t. Note the we require
t ≤ (d− 1)/2 in order to hope to decode it, because of Lemma 77.

The rough idea behind error-trapping is that, using a suitable cyclic shift
of the received vector, we want to “trap” the error-coordinates in the non-
information bits. That is, we hope to find a cyclic shift σ such that the non-
zero coordinates of ~eσ = (eσ(1), . . . , vσ(n)) all occur outside the information
bits of C. This will help us decode ~v.

Example 114. Let C ⊂ GF (2)7 be the cyclic code associated to the generator
polynomial g(x) = x3 + x+ 1, with generator matrix

G′ =


1 0 1 1 1 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 .

Assume that ~v = (0, 0, 1, 1, 0, 0, 1) was received and assume at most 1
error was made. We keep shifting ~v to the right until we find a vector whose
information bits yields a nearby codeword.

If the information bits are correct then ~m = (0, 0, 0, 1) was the origi-
nal message, so ~c = ~mG′ = (0, 0, 0, 1, 1, 0, 1) was the codeword sent. Note
dist(~v,~c) = 2, so this can’t be the correct codeword (since we assume at most
1 error was made).

Shift by one to the right: σ~v = (1, 0, 0, 1, 1, 0, 0). If the information bits
are correct then ~m = (1, 0, 0, 0) was the original message, so ~c = ~mG′ =
(1, 0, 1, 1, 1, 0, 0) was the codeword sent. Note dist(σ~v,~c) = 1, so

decode[(1, 0, 0, 1, 1, 0, 0)] = (1, 0, 1, 1, 1, 0, 0).

Left-shifting to our original receiced word, we have

decode[(0, 0, 1, 1, 0, 0, 1)] = decode[σ−1(1, 0, 0, 1, 1, 0, 0)]

= σ−1(1, 0, 1, 1, 1, 0, 0) = (0, 1, 1, 1, 0, 0, 1).

It is simpler to mathematically prove error-trapping works using the lan-
guage of syndromes. For this purpose, we introduce some new notation.

Set-up: Again, assume C ⊂ GF (2)n is a cyclic code. After possibly
permuting the coordinates of C (i.e., the columns the generator matrix), we
can assume that the generator matrix in standard form, G = (I, A), for some

92

k × (n − k) matrix A. This equivalent code might not be cyclic. None-the-
less, for the remainder of this section, we assume (for simplicity) that C is a
cyclic code with generator matrix in standard form, G = (Ik, A). By Lemma
74, we may take H = (−AT , In−k) = (AT , In−k) as the check matrix.

We need the following fact.

Proposition 115. Suppose ~c = (c1, . . . , cn) is the codeword sent and the
received vector has the form ~v = ~c + ~e = (v1, . . . , vn), where the error vector
is ~e = (e1, . . . , en) and dist(~v,~c) = t ≤ (d − 1)/2. If ~s = H~v has weight
≤ t then the information bits of ~v are correct. In this case, the errors are
contained in the non-zero coordinates of the syndrome H~v.

Proof. Suppose wt(H~v) ≤ t. Let ~e = (~e(1), ~e(2)), where ~e(1) = (e1, . . . , ek) and
~e(2) = (ek+1, . . . , en).

Suppose that that the information bits are not all zero: ~e(1) 6= ~0. We
derive a contradiction.

Let

~c′ = ~e(1)G = ~e(1)(Ik, A) = (~e(1), ~e(1)A),

Note

H~v = H~c+H~e = H~e = H(~e(1), ~e(2)) = (AT , In−k)(~e
(1), ~e(2)) = (AT~e(1), ~e(2)),

so wt(AT~e(1)) = wt(H~v)−wt(~e(2)). On one hand, we have wt(~c′) ≥ d ≥ 2t+1.
On the other hand,

wt(~c′) = wt(~e(1)) + wt(~e(1)A) = wt(~e(1)) + wt(H~v)− wt(~e(2)).

This implies

wt(H~v) ≥ 2t+ 1− wt(~e(1)) + wt(~e(2)) ≥ t+ 1.

This is a contradiction.
For the second part, since ~e(1) = ~0, we have H~v = ~e(2). �

Example 116. Let C ⊂ GF (2)9 be the cyclic code associated to the generator
polynomial g(x) = x6 + x3 + 1, with generator matrix

G =

 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


93

and check polynomial

H =


1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1

 .

This is a [9, 3, 3] code (and it may be verified that the BCH bound is sharp
in this example). Furthermore, the information bits are in the last three
coordinates.

Suppose that ~v = (1, 0, 1, 1, 1, 1, 1, 0, 1) is a received word. The syndrome
is H~v = (0, 0, 0, 0, 1, 0). The above proposition applies since the weight of
this syndrome is ≤ t = [(d− 1)/2] = 1. Therefore, the error occured outside
the information bits, so ~m = (1, 0, 1) was the original message. This tells us
that ~c = ~mG = (1, 0, 1, 1, 0, 1, 1, 0, 1) is the codeword sent:

decode[(1, 0, 1, 1, 1, 1, 1, 0, 1)] = (1, 0, 1, 1, 0, 1, 1, 0, 1).

Suppose that ~v = (1, 1, 1, 1, 0, 1, 1, 0, 1) is a received word. The syndrome
is H~v = (0, 1, 0, 0, 0, 0). Therefore, the error occurred outside the infor-
mation bits, so ~m = (1, 0, 1) was the original message. This tells us that
~c = ~mG = (1, 0, 1, 1, 0, 1, 1, 0, 1) is the codeword sent, as above. Alterna-
tively, since the weight of ~e is assumed to be ≤ 1 (because d = 3), H~e is
the column of H associated with the non-zero coordinate of ~e. The fact that
H~v = (0, 1, 0, 0, 0, 0) tells us the error is in the 2nd position, so

decode[(1, 1, 1, 1, 0, 1, 1, 0, 1)] = (1, 0, 1, 1, 0, 1, 1, 0, 1).

Suppose that ~v = (1, 0, 1, 1, 0, 1, 1, 1, 1) is a received word. The syndrome
is H~v = (0, 1, 0, 0, 1, 0). This has weight > 1, so the information bits of ~v
are wrong. We shift to the right, and check again:

σ~v = (1, 1, 0, 1, 1, 0, 1, 1, 1), Hσ~v = (0, 0, 1, 0, 0, 1).

This too has weight > 1, so the information bits of σ~v are wrong. We shift
again to the right, and check again:

σ~v = (1, 1, 1, 0, 1, 1, 0, 1, 1), Hσ~v = (1, 0, 0, 0, 0, 0).

94

Therefore, the error occurred outside the information bits, so ~m = (0, 1, 1).
Therefore,

decode[(1, 1, 1, 0, 1, 1, 0, 1, 1)] = ~mG = (0, 1, 1, 0, 1, 1, 0, 1, 1).

We left-shift twice to get to our original received vector:

decode[(1, 0, 1, 1, 0, 1, 1, 1, 1)] = decode[σ−2(1, 1, 1, 0, 1, 1, 0, 1, 1)]

= σ−2(0, 1, 1, 0, 1, 1, 0, 1, 1) = (1, 0, 1, 1, 0, 1, 1, 0, 1).

Example 117. Let C ⊂ GF (2)17 be the quadratic residue cde in Example
103.

Suppose that the received vector is ~v = (0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1)
(the codeword c = (1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) was the originally
transmitted vector). Suppose you know two errors were made. Can you de-
code it using the error-trapping method?

Suppose that the received vector is ~v = (0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(the codeword c = (1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) was the originally
transmitted vector). Suppose you know two errors were made. Can you de-
code it using the error-trapping method?

3.6.5 Cyclic codes and LFSRs

Suppose

xn − 1 = g(x)h(x),

for some g(x) ∈ GF (q)[x] of degree n− k and h(x) ∈ GF (q)[x] of degree k.
Write

g(x) = g0 + g1x+ . . .+ gn−kx
n−k, g0 6= 0, gn−k 6= 0,

and

h(x) = h0 + h1x+ . . .+ hkx
k, h0 6= 0, hk 6= 0.

Consider the LFSR sequence

an+1 =
k∑
j=1

cjan+1−j, (15)

of length k. It turns out there is a close connection between these.

95

Proposition 118. Let g(x), h(x) ∈ Rn be as above (their product is xn− 1).
The LFSR sequence

an+1 =
k∑
j=1

−hk+1−jan+1−j,

has period n and connection polynomial −h∗(x), where h∗ is the reverse poly-
nomial of h(x). Moreover, the states of this LFSR are all codewords in
φ−1(C), where C = (g(x)).

Remark 5. In fact, if ~a0 = (a0, . . . , ak−1) is any initial fill, then the initial
state ~a0G is a codeword in φ−1(C).

Proof. Let C ′ = φ−1(C) be the corresponding cyclic [n, k] code over GF (q).
By a theorem above, the code C has an (n− k)×n check matrix of the form

H =


hk hk−1 ... h0 0 ... 0
0 hk ... h0 0 ... 0
.
.
.
0 ... 0 hk hk−1 ... h0

 .

Since h(x) divides xn − 1, we must have h0 = 1. If ~c = (c1, ..., cn) ∈ C then

H · ~c = ~0. So ~c · ~H1 = 0 (~H1 = top row of H). This means

c1 · hk + c2 · hk−1 + ...+ ck+1 · h0 + ck+2 · 0 + ...+ cn · 0 = 0,

so

ck+1 = −c1 · hk − c2 · hk−1 − ...− ck · h1 (16)

Likewise, for the second row,

ck+2 = −c2 · hk − c3 · hk−1 − ...− ck+1 · h1, (17)

and so on for the other rows. This recursive relation defines a LFSR sequence.
From the definitions, it follows that the connection polynomial is −h∗(x),
where h is the above check polynomial. Since we are over GF (2), this is the
same as h∗(x), as claimed. �

96

Example 119. Consider the binary LFSR with key (1, 0, 1, 1) and fill (1, 1, 0, 1):

ck+1 = ck + ck−1 + ck−3, (18)

and c0 = 1, c1 = 1, c2 = 0, c3 = 1. The first several terms are

1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1,

Note that the states

(1, 1, 0, 1, 0, 0, 0), (1, 0, 1, 0, 0, 0, 1), (0, 1, 0, 0, 0, 1, 1), . . . ,

of this LFSR sequence are all codewords of the cyclic code in Example 98.
Now, let’s build different LFSR sequences, one for each possible initial

fill, but all using the same key (18). For each, we only compute the entries
in one full period:

(0, 0, 0, 0, 0, 0, 0) with initial fill (0, 0, 0, 0),

(1, 0, 0, 0, 1, 1, 0) with initial fill (1, 0, 0, 0),

(0, 1, 0, 0, 0, 1, 1) with initial fill (0, 1, 0, 0),

(1, 1, 0, 0, 1, 0, 1) with initial fill (1, 1, 0, 0),

(0, 0, 1, 0, 1, 1, 1) with initial fill (0, 0, 1, 0),

(1, 0, 1, 0, 0, 0, 1) with initial fill (1, 0, 1, 0),

(0, 1, 1, 0, 1, 0, 0) with initial fill (0, 1, 1, 0),

(1, 1, 1, 0, 0, 1, 0) with initial fill (1, 1, 1, 0),

(0, 0, 0, 1, 1, 0, 1) with initial fill (0, 0, 0, 1),

(1, 0, 0, 1, 0, 1, 1) with initial fill (1, 0, 0, 1),

(0, 1, 0, 1, 1, 1, 0) with initial fill (0, 1, 0, 1),

(1, 1, 0, 1, 0, 0, 0) with initial fill (1, 1, 0, 1),

(0, 0, 1, 1, 0, 1, 0) with initial fill (0, 0, 1, 1),

(1, 0, 1, 1, 1, 0, 0) with initial fill (1, 0, 1, 1),

(0, 1, 1, 1, 0, 0, 1) with initial fill (0, 1, 1, 1),

(1, 1, 1, 1, 1, 1, 1) with initial fill (1, 1, 1, 1).

Note that these are all codewords of the cyclic code in Example 98.

97

4 Lattices

In mathematics, the term lattice is used for several completely different
things. A few of them are listed below.

(a) It can refer to a partially ordered set in which any pair of elements has
a least upper bound and a unique greatest lower bound.

(b) It can refer to a discrete co-compact subgroup of a (possibly non-
abelian) topological group.

(c) It can refer to a finitely generated free abelian group.

(d) It can refer to a subgroup of Rn which is isomorphic (as an abelian
group) to Zk, for some k ≤ n.

In this class, we only use a special case of (d).

4.1 Basic definitions

Before defining (d) more carefully, we discuss the connection between (b), (c)
and (d). In either case, a lattice will be a finitely generated abelian group,
written additively.

If G is any finitely generated abelian group then let

Gtor = {g ∈ G | mg = 0}

denote its torsion subgroup. For example, if

G = Z× Z/2Z = {(x, y) | x ∈ Z, y ∈ Z/2Z}

then

Gtor = {(0, y) | y ∈ Z/2Z} ∼= Z/2Z.

The following result will not be proven14 here, but will help place groups
arising in (c) in context of groups arising in (d).

Theorem 120. (Theorem 2.4.1 in [C93]) Let G be a finitely generated abelian
group.

14A proof is given, for example, in chapter 1 of Lang’s book Algebra.

98

(1) There is an r > 0 such that

G ∼= Gtor × Zr.

(2) If r = 0 in (a) then there is an n > 0 and a subgroup L of Zn such that
G ∼= Zn/L.

The integer r is called the rank of G.

Example 121. Let A be any m×n matrix having entries in Z. Let L1 denote
the Z-linear row span of A and let L2 denote the Z-linear column span of A.
The above theorem tells us that

Zn/L1
∼= H1 × Zr1 ,

for some integer r1 ≥ 0 and some finite group H1, and

Zm/L2
∼= H2 × Zr2 ,

for some integer r2 ≥ 0 and some finite group H2. In general, r1 = r2 =
rank(A) and the finite groups H1 and H2 can be determined from the Smith
Normal Form of A.

With regard to (b) and (d), we say that an infinite subset L ⊂ Rn is
discrete if there is an ε > 0 such that, for all v1, v2 ∈ L, ||v1 − v2|| > ε.

Theorem 122. If L ⊂ Rn is a discrete subgroup (with respect to the usual
vector addition and subtraction operations) then, for some k with 0 ≤ k ≤ n,
there are v1, . . . , vk ∈ Rn such that

L = SpanZ{v1, . . . , vk}.

This is not obvious and the proof is omitted. However, it is the result
which connects (b) to (d).

For us, a lattice in Rn is a subgroup of Rn which is isomorphic (as an
abelian group) to Zn, and whose R-linear combinations spans the real vector
space Rn. Others call this a full-rank lattice.

A typical lattice L in Rn has the form

L = SpanZ{v1, . . . , vn} = {c1v1 + . . .+ cnvn | ci ∈ Z},

99

where {v1, . . . , vn} is a basis for Rn (as a vector space over R). We call L an
integral lattice if it has the above form, where {v1, . . . , vn} is a subset of Zn.

A basis for L is any set of independent vectors whose Z-linear combina-
tions spans L. The dimention or rank of L is the number of elements in a
basis.

Lemma 123. Let L be an integral lattice in Rn¿ Suppose that {v1, . . . , vn}
and {w1, . . . , wn} each are a basis for L. Then there is an a ∈ GL(n,Z) such
that wi = Avi, for i = 1, 2, . . . , n.

Proof. Express the vis as a linear combination of the wis. This relation may
be described as a matrix equation, vi = Bwi, where B is an n × n matrix
with integer entries. It is unique by linear independence. Express the wis as
a linear combination of the vis. This relation may be described as a matrix
equation, wi = Cvi, where C is an n × n matrix with integer entries. It is
unique by linear independence. This forces B = C−1. Take A = C. �

Example 124. Consider the basis v1 = (0,−1,−1), v2 = (1, 2, 2), v3 =
(0, 1, 2) of L = Z3. Another basis is w1 = (1,−4,−1), w2 = (−1,−5, 0),
w3 = (1, 4, 0). Let

A =

 1 −3 2
−13 4 0
−2 2 −1

 .

It is easy to check that Avi = wi, for i = 1, 2, 3.

If L ⊂ Rn is a rank n lattice generated by vectors v1, . . . , vn then the
fundamental domain of L is defined to be

F = {a1v1 + . . .+ anvn | 0 ≤ ai < 1, 1 ≤ i ≤ n}.

This is a parallelopiped generated by v1, . . . , vn.

Lemma 125. (a) Every element v ∈ Rn can be written as `+f , for a unique
` ∈ L and f ∈ F .

(b) The quotient map of abelian groups

Rn → Rn/L,

x 7→ x+ L,

restricts to an isomophism F → Rn/L.

100

Proof. ... �

From matrix theory, we know

vol(F) = det(v1, . . . vn),

where each vi is regarded as a column vector. This quantity is called the
determinant of L. The determinant of L occurs in several important results
on lattices.

Theorem 126. (Minkowski’s Theorem) Let L ⊂ Rn denote a lattice and let
S ⊂ Rn denote a symmetric convex subset. If

vol(S) > 2n det(L),

then S contains a non-zero element of L.

Theorem 127. (Hermite’s Theorem) Let L ⊂ Rn denote a lattice. There is
a non-zero v ∈ L such that

||v|| ≤
√
n det(L).

The Gauss expected shortest length of a “random” lattice L ⊂ Rn is

σ(L) =

√
n

2πe
(detL)1/n.

Example 128. For a “random” 2×2 integral matrix A, the expected shortest
length of RowSpanZ(A) is

| det(A)|1/2(1

πe
)1/2.

In the case of

A =

(
20 16
20 17

)
,

a matrix with determinant 20 and shortest vector (0, 1), we have

| det(A)|1/2(1

πe
)1/2 = 1.53

101

4.2 The shortest vector problem

There are a number of computationally difficult problems associated with a
lattice. This section lists some of them.

The Shortest Vector Problem (SVP): Find a shortest nonzero vector in
an integer lattice L ⊂ Rn, i.e., find a nonzero vector v ∈ L that minimizes
the Euclidean norm ||v||.

The best known at this time is Kannan’s HKZ basis reduction algorithm,
which solves the problem in n

n
2e

+o(n). Ajtai showed that the SVP problem
was NP-hard.

The Closest Vector Problem (CVP): Given a vector w ∈ Rn − L, find
a vector v ∈ L that is closest to w, i.e., that minimizes the Euclidean norm
||w − v||.

It is known that any hardness of SVP implies the same hardness for CVP.

Shortest Basis Problem (SBP): Find a basis v1, . . . , vn for a lattice that
is shortest in some sense.

To this end, we present Gauss’ algorithm for computing a shortest basis
of a two-dimensional lattice.
Input: a basis v1, v2 for a lattice L ⊂ Z2

Output: a non-zero shortest vector in L

(1) If ||v2|| < ||v1||, swap v1 and v2.

(2) Compute m = round(v1 · v2/||v1||2), where round : R → Z rounds to
the nearest integer (and away from 0 in case of a half-integer).

(3) If m = 0, return the basis vectors v1 and v2.

(4) Replace v2 with v2 −mv1.

(5) Go to (1)

Remark 6. The example of L = SpanZ{(20, 16), (16, 20)} shows that one
cannot in general replace nearest integer by floor in the above algorithm.

Alternatively, we could describe Gauss’ algorithm as follows:

(1) If ||v2|| < ||v1||, swap v1 and v2.

102

(2) Replace v2 with v2 −mv1, where m ∈ Z is computed so that v2 −mv1
is as short as possible.

(3) If ||v2|| ≥ ||v1|| then return v1, v2.

(4) Go to (1)

This last description makes it clearer that we are running through the
following loop: (a) make sure v1 is shorter than v2, (b) try to replace v2 by
its difference with the vector projection of v2 onto v1 (or at least the vector
in the lattice closest to this).

Example 129. Let L = SpanZ{(20, 16), (20, 17)}. Find a shortest basis for
L.

and:
Sagemath

sage: A = matrix(ZZ, [[20,16],[20,17]])
sage: A.LLL()
[0 1]
[20 0]
sage: A.BKZ()
[0 1]
[20 0]

In other words, Sagemath tells us that the answer is {(0, 1), (20, 0)}, whether
we use the LLL algorithm or the BKZ variant.

Let us use Gauss’ algorithm.

(1) Note ||v1|| = 25.61... < ||v2|| = 26.24... .

(2) Compute m = [v1 · v2/||v1||2] = [20
2+16·17

202+162
] = 1.

(4) Replace v2 with v2 −mv1 = (20, 17)− (20, 16) = (0, 1).

(1) Note ||v2|| = 1 < ||v1|| = 25.61..., so let v1 = (0, 1) and v2 = (20, 16).

(2) Compute m = [v1 · v2/||v1||2] = [16
02+12

] = 16.

(4) Replace v2 with v2 −mv1 = (20, 16)− (0, 16) = (20, 0).

(1) Note ||v2|| = 20 > ||v1|| = 1.

103

(2) Compute m = [v1 · v2/||v1||2] = 0. Return v1 = (0, 1) and v2 = (20, 0).

The Sagemath commands for this are below.

Sagemath

sage: v1 = vector(ZZ,[20,16]); v2 = vector(ZZ,[20,17])
sage: Nv1 = v1.norm(); Nv2 = v2.norm()
sage: RR(Nv1); RR(Nv2)
25.6124969497314
26.2488094968134
sage: m = int(v1.dot_product(v2)/Nv1ˆ2); m
1
sage: v2 = v2-m*v1; v2
(0, 1)
sage: Nv1 = v1.norm(); Nv2 = v2.norm()
sage: RR(Nv1); RR(Nv2)
25.6124969497314
1.00000000000000
sage: v1,v2=v2,v1
sage: Nv1 = v1.norm(); Nv2 = v2.norm()
sage: RR(Nv1); RR(Nv2)
1.00000000000000
25.6124969497314
sage: m = int(v1.dot_product(v2)/Nv1ˆ2); m
16
sage: v2 = v2-m*v1; v2
(20, 0)
sage: Nv1 = v1.norm(); Nv2 = v2.norm()
sage: RR(Nv1); RR(Nv2)
1.00000000000000
20.0000000000000
sage: v1; v2
(0, 1)
(20, 0)

In either case, the result is that the Gauss algorithm, too, tells us that the
answer is {(0, 1), (20, 0)},

Example 130. Let L = SpanZ{(201, 217), (120, 123)}. Find a shortest basis
for L. The steps above give

(201, 217), (120, 123),

(120, 123), (201, 217),

(120, 123), (81, 94), θ = 3.6o,

(81, 94), (120, 123),

104

(81, 94), (39, 29), θ = 13o,

(39, 29), (81, 94),

(39, 29), (3, 36), θ = 49o,

(3, 36), (39, 29).

This is depicted in Figure 2.

Figure 2: Gauss’ algorithm

Lemma 131. Gauss’ algorithm above terminates in a finite number of steps
and produces a shortest vector in L.

Proof. Suppose we have a basis v1, v2 for a lattice L ⊂ Z2, where ||v1|| ≤
||v2||.

The algorithm must terminate in a finite number of steps since the vectors
v1, v2 in stage k decreased in size from those v1, v2 in stage k − 1.

105

Suppose the algorithm has terminated and returned v1, v2. Since nearest
integer to v1 · v2/||v1||2 is 0, the length of projv1(v2) satisfies

|projv1(v2)| =
|v1 · v2|
||v1||2

≤ 1/2.

Let v = a1v1 + a2v2, for a1, a2 ∈ Z. We have

||v||2 = a21||v1||2 + 2a1a2(v1 · v2) + a22||v2||2 ≥ (a21− |a1a2|+ a22)||v1||2 ≥ ||v1||2.

Therefore, v1 is a shortest vector in L. �

4.2.1 Application to a congruential PKC

This application follows §6.1 in the excellent book [HPS].
Alice wants to talk to Bob. Bob tells Alice that he has to generate keys

first. He picks a large integer q and secret positive integers f, g with

√
q/2 < f, g <

√
q/2, gcd(f, q) = 1.

He then computes

h = f−1g (mod q), (19)

where f−1 is computed in (Z/qZ)×.
The public key is (h, q) and the private key is (f, g).

Encryption: Alice converts her plaintext into an integer m, satisfying 0 <
m <

√
q/2. She also picks a random integer r satisfying 0 < r <

√
q/2. She

computes the ciphertext

c = rh+m (mod q).

and sends it to Bob.
Decryption: Bob decrypts by first computing

a = fc (mod q),

and then computing

m = f−1a (mod g),

106

where f−1 is computed in (Z/gZ)×.
Break: Note that (19) is equivalent to

g = hf + jq,

for some integer j. Therefore,

f(1, h)− j(0, q) = (f, g),

and in particular, the private key belongs to the lattice L = SpanZ{(1, h), (0, q)}.
Here is an example using Sagemath :

Sagemath

sage: q = 100000
sage: RR(sqrt(q/2)) ## upper bound for f,g
223.606797749979
sage: f = 211; g = 213
sage: Zq = IntegerModRing(q)
sage: Zq(f)ˆ(-1)
92891
sage: h = Zq(f)ˆ(-1)*g
sage: h
85783
sage: RR(sqrt(q/4)) ## lower bound for g, upper bound for m
158.113883008419
sage: m = 125
sage: r = 199
sage: c = r*h+m; c
70942
sage: a = f*c; a
68762
sage: Zg = IntegerModRing(g)
sage: b = Zg(ZZ(f))ˆ(-1)*ZZ(a); b
125
sage: A = matrix(ZZ, [[1,h],[0,q]]); A
[1 85783]
[0 100000]
sage: A.LLL()
[-211 -213]
[-204 268]
sage: f; g
211
213

4.3 LLL and a reduced lattice basis

The LenstraLenstraLovász (LLL) algorithm is a generalization of Gauss’ al-
gorithm. However, in higher dimensions it does not always produce a shortest
vector.

107

Let B = {v1, . . . , vn} denote an integral basis of the lattice L ⊂ Rn. The
GramSchmidt algorithm produced an orthogonal basis of Rn as follows. Start
with w1 = v1, and then for i > 1 let

wi = vi −
i−1∑
j=1

µi,jvj (20)

where µi,j = (vi·wj)/||wj||2. Note: The collection of vectors B∗ = {w1, . . . , wn}
is an orthogonal basis for Rn but is (typically) not a basis for the lattice L
spanned by B.

Definition 132. We say that the basis B of L is reduced if

|µi,j| ≤ 1/2,

and

|||wi|| ≥
√

3/4− µ2
i,i−1||wi−1||, i > 1.

This definition is makes precise the idea of a “nearly orthogonal” basis of a
lattice. The last condition in Definition 132 basically says that the projection
of vi onto SpanZ(v1, . . . , vi−2)

⊥ is not too short relative to the projection of
vi−1 onto the same space.

Example 133. Let L = RowSpanZ(A) be generated by the rows of

A =

 1 2 3
4 −1 0
3 2 1

 .

A reduced basis for L is given by

{(2, 0, −2) , (−2, 1, −2) , (−1, 3, 1)}.

Let the ith row of A be denoted by vi. Now, sort the {vi} by length,
shortest to longest. By analogy with (20), the basic idea behind LLL is, for
each j, to repeatedly apply

vj = vj − round(µj,i)vi, i < j,

provided it shortens vj.

108

4.4 Hermite normal form

While the LLL algorithm is, in some very rough sense, an analog of Gram-
Schmidt, the Hermite normal form algorithm is, in some very rough sense,
an analog of row reduction. While the Hermite normal form (HNF) is more
reduced in some sense, and while rows of HNF (A) and A do generate the
same integral lattice, the rows of HNF (A) are often longer than the rows of
A itself. Therefore, the HNF is not a substitute for LLL.

An m×n matrix A with integer entries is in Hermite normal form (HNF)
if

• All nonzero rows are above any rows of all zeroes,

• The leading coefficient (the pivot) of a nonzero row is always strictly
to the right of the leading coefficient of the row above it; moreover, it
is positive.

• All entries in a row above a leading entry are nonnegative and strictly
smaller than the leading entry.

• All entries in a column below a leading entry are zeroes.

In particular, a nonsingular square matrix with integer entries will be in
Hermite normal form if (a) it is upper triangular, (b) its diagonal entries are
positive, (c) in every column, the entries above the diagonal are non-negative
and smaller than the entry on the diagonal.

Theorem 134. For each n × n matrix A with integer entries, there is a
(non-unique) matrix U having integer entries and determinant ±1 such that
UA = H, where H is the HNF of A.

Example 135. Let

A =

 1 2 3
4 −1 0
3 2 1

 .

Take −4 times row 1 and add it to row 2: 1 2 3
0 −9 −12
3 2 1

 .

109

Take −3 times row 1 and add it to row 3: 1 2 3
0 −9 −12
0 −4 −8

 .

Take −2 times row 3 and add it to row 2: 1 2 3
0 −1 4
0 −4 −8

 .

Take −4 times row 2 and add it to row 3: 1 2 3
0 −1 4
0 0 −24

 .

Take 2 times row 2 and add it to row 1: 1 0 11
0 −1 4
0 0 −24

 .

Rescale rows 2 and 3:  1 0 11
0 1 −4
0 0 24

 .

Finally, to get the Hermite normal form of A, add row 3 to row 2:

HNF (A) =

 1 0 11
0 1 20
0 0 24

 .

Also, note that if we started with the augmented matrix (A, I3) instead of
A and performed exactly the same operations, we would obtain 1 0 11 5 2 −4

0 1 20 9 3 −7
0 0 24 11 4 −9


110

as our last step. In this case, it is not hard to verify that the block

U =

 5 2 −4
9 3 −7

11 4 −9


satisfies the criterion in the Theorem above: UA = HNF (A).

4.5 NTRU as a lattice cryptosystem

This section continues using the notation in the previous section on NTRU,
§1.6.2.

One attempt at an interpretation is to compute the NTRU public key

h(x) = g(x)f−1q (x) ∈ Hq,

lift this to h∗(x) ∈ H, then regard the collection of multiples b(x)h∗(x) as
belonging to the lattice L spanned by the columns of MatN(h∗), where MatN
is defined in (6). While h is the public key, L depends on h∗. The decryption
problem boils down to this: given an element of a coset vecN(m) + L, can
one (efficiently) recover m(x) independent of the lifting choosen? Maybe one
can, but I don’t see how. There is another approach, discussed next, which
is much better.

The following interpretation is found in chapter 6 of the book by Hoffstein,
Piper and Silverman [HPS].

Consider the upper-triangular 2N × 2N matrix

Mh =

(
IN MatN(h)T

0 qIN

)
, (21)

where IN denotes the N × N identity matrix, 0 denotes the N × N matrix
of all zeros. The Z-span of the rows of Mh defines the NTRU lattice,

Lh = RowZ(Mh).

The following result is Prop. 6.59 in [HPS].

Proposition 136. We have

f(x)h(x) = g(x) + qj(x)

111

in H if and only if

(~f,−~j)Mh = (~f,~g).

In particular, (~f,~g) ∈ Lh.

Before proving this, let’s look at an example.

Example 137. Let

N = 3, p = 3, q = 101.

Let f(x) = x2 + 1, so f−1p (x) = x2 + 2x+ 2 ∈ Hp, and f−1q (x) = 50x2 + 51x+
51 ∈ Hq. Let g(x) = x2 + x+ 1 and compute

h(x) = g(x)f−1q (x) = 51x2 + 51x+ 51

in Hq. In H, we have

f(x)h(x)−g(x) = 51x4+51x3+101x2+50x+50 = 101x2+101x+101 = qj(x),

where j(x) = x2 + x+ 1.
We have

Mh =


1 0 0 51 51 51
0 1 0 51 51 51
0 0 1 51 51 51
0 0 0 101 0 0
0 0 0 0 101 0
0 0 0 0 0 101

 .

Since (~f,−~j) = (1, 0, 1,−1,−1,−1), we have (~f,−~j)Mh = (1, 0, 1, 1, 1, 1), as
desired.

To see how to recover the private key (f(x), g(x)) from the NTRU lattice,
first look at the following computation using Sagemath :

Sagemath

sage: r1 = [1 , 0 , 0 , 51 , 51 , 51]
sage: r2 = [0 , 1 , 0 , 51 , 51 , 51]
sage: r3 = [0 , 0 , 1 , 51 , 51 , 51]
sage: r4 = [0 , 0 , 0 , 101 , 0 , 0]

112

sage: r5 = [0 , 0 , 0 , 0 , 101 , 0]
sage: r6 = [0 , 0 , 0 , 0 , 0 , 101]
sage: M_h = matrix(ZZ,[r1,r2,r3,r4,r5,r6])
sage: M_h.LLL()
[-1 1 0 0 0 0]
[-1 0 1 0 0 0]
[-1 0 -1 -1 -1 -1]
[-23 -23 -23 16 16 16]
[-7 -8 -8 39 39 -62]
[7 8 8 62 -39 -39]

Notice that one of the shortest vectors returned by LLL is (−1, 0,−1,−1,−1,−1),
or rescaled, is

(1, 0, 1, 1, 1, 1).

This is precisely the vector representation of the private (f(x), g(x)) = (x2 +
1, x2 + x+ 1).

References

[CJT12] Chris Christensen, David Joyner, Jenna Torres, Lester Hill’s error-
detecting codes, Cryptologia 36(2012)88-103.

[C93] H. Cohen, A course in computational algebraic number theory,
Springer, 1993.

[HPS] Jeffery Hoffstein, Jill Pipher, Joseph H. Silverman, An Introduction
to Mathematical Cryptography, Springer, 2008.

[Kl13] Andreas Klein, Stream Ciphers, Springer-Verlag, 2013.

[Ju15] Thomas W. Judson, Abstract Algebra,
http://abstract.ups.edu/.

[MS77] F. MacWilliams and N. Sloane, The theory of error-correcting
codes, North-Holland, 1977.

[Sa] Sagemath , (free web-based collaboration platform) http://cloud.

sagemath.com and online information (such as the online documenta-
tion)
http://www.sagemath.org.

113

[SBGJKMW] Dennis Spellman, Georgia M. Benkart, Anthony M. Gaglione,
W. David Joyner, Mark E. Kidwell, Mark D. Meyerson, William P.
Wardlaw, Principal Ideals and Associate Rings, preprint, 2001.
http://wdjoyner.com/papers/ring3.pdf

[SS] Damien Stehlé and Ron Steinfeld, Making NTRUEncrypt and
NTRUSign as Secure as Worst-Case Problems over Ideal Lattices, Eu-
rocrypt2011 proceedings.

114

